Description
Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:
0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:
9 2
-4 1
-1 8
and has a sum of 15.
Input
The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].
Output
Output the sum of the maximal sub-rectangle.
Sample Input
4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1
8 0 -2
Sample Output
15
突然发现自己以前写过……思路大概就是对这个矩阵进行降维打击,处理每一列的最大子段和。
/*
k循环矩阵大小,i循环起始行,j循环列,f[x]存一列的最大分段和,x处理一列的值;
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[200][200],f[200];
int main(){
//freopen("in.txt","r",stdin);
int n,i,x,y,k,j,maxn=-1e6;
scanf("%d",&n);
for(i=1;i<=n;i++)
for(j=1;j<=n;j++){
scanf("%d",&a[i][j]);
}
for(k=1;k<=n;k++){//矩阵大小
for(i=1;i<=n-k+1;i++){ //起始行
memset(f,0,sizeof(f));//每找一个矩阵先清零
for(j=1;j<=n;j++){//循环列
for(x=i;x<=i+k;x++)f[j]+=a[x][j];//处理每一列的值
f[j]=max(f[j],f[j-1]+f[j]);
if(f[j]>maxn)maxn=f[j];
}}}
printf("%d",maxn);
return 0;
}
总结
最大子段和的变形