【题解】poj1050 T0 the Max 贪心

这是一篇关于解决POJ1050问题的博客,该问题涉及寻找二维数组中和最大的子矩形。算法策略是对数组进行降维处理,求解每列的最大子段和。通过这种方式,找到最大子矩形的和为15。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

题目链接

Description

Given a two-dimensional array of positive and negative integers, a sub-rectangle is any contiguous sub-array of size 1*1 or greater located within the whole array. The sum of a rectangle is the sum of all the elements in that rectangle. In this problem the sub-rectangle with the largest sum is referred to as the maximal sub-rectangle.
As an example, the maximal sub-rectangle of the array:

0 -2 -7 0
9 2 -6 2
-4 1 -4 1
-1 8 0 -2
is in the lower left corner:

9 2
-4 1
-1 8
and has a sum of 15.

Input

The input consists of an N * N array of integers. The input begins with a single positive integer N on a line by itself, indicating the size of the square two-dimensional array. This is followed by N^2 integers separated by whitespace (spaces and newlines). These are the N^2 integers of the array, presented in row-major order. That is, all numbers in the first row, left to right, then all numbers in the second row, left to right, etc. N may be as large as 100. The numbers in the array will be in the range [-127,127].

Output

Output the sum of the maximal sub-rectangle.

Sample Input

4
0 -2 -7 0 9 2 -6 2
-4 1 -4 1 -1

8 0 -2

Sample Output

15


突然发现自己以前写过……思路大概就是对这个矩阵进行降维打击,处理每一列的最大子段和。

/*
k循环矩阵大小,i循环起始行,j循环列,f[x]存一列的最大分段和,x处理一列的值; 
*/
#include<cstdio>
#include<cstring>
#include<algorithm>
using namespace std;
int a[200][200],f[200];
int main(){
    //freopen("in.txt","r",stdin);
    int n,i,x,y,k,j,maxn=-1e6;
    scanf("%d",&n);
    for(i=1;i<=n;i++)
    for(j=1;j<=n;j++){
        scanf("%d",&a[i][j]);
    }
    for(k=1;k<=n;k++){//矩阵大小 
    for(i=1;i<=n-k+1;i++){ //起始行 
    memset(f,0,sizeof(f));//每找一个矩阵先清零 
    for(j=1;j<=n;j++){//循环列 
        for(x=i;x<=i+k;x++)f[j]+=a[x][j];//处理每一列的值 
        f[j]=max(f[j],f[j-1]+f[j]);
        if(f[j]>maxn)maxn=f[j];
    }}}
    printf("%d",maxn);
    return 0;
}

总结

最大子段和的变形

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值