1035 插入与归并 (25 point(s))
根据维基百科的定义:
插入排序是迭代算法,逐一获得输入数据,逐步产生有序的输出序列。每步迭代中,算法从输入序列中取出一元素,将之插入有序序列中正确的位置。如此迭代直到全部元素有序。
归并排序进行如下迭代操作:首先将原始序列看成 N 个只包含 1 个元素的有序子序列,然后每次迭代归并两个相邻的有序子序列,直到最后只剩下 1 个有序的序列。
现给定原始序列和由某排序算法产生的中间序列,请你判断该算法究竟是哪种排序算法?
输入格式:
输入在第一行给出正整数 N (≤100);随后一行给出原始序列的 N 个整数;最后一行给出由某排序算法产生的中间序列。这里假设排序的目标序列是升序。数字间以空格分隔。
输出格式:
首先在第 1 行中输出Insertion Sort表示插入排序、或Merge Sort表示归并排序;然后在第 2 行中输出用该排序算法再迭代一轮的结果序列。题目保证每组测试的结果是唯一的。数字间以空格分隔,且行首尾不得有多余空格。
输入样例 1:
10
3 1 2 8 7 5 9 4 6 0
1 2 3 7 8 5 9 4 6 0
输出样例 1:
Insertion Sort
1 2 3 5 7 8 9 4 6 0
输入样例 2:
10
3 1 2 8 7 5 9 4 0 6
1 3 2 8 5 7 4 9 0 6
输出样例 2:
Merge Sort
1 2 3 8 4 5 7 9 0 6
题解
考察了对sort函数的操作和对归并排序和插入排序过程的理解。
- 如何判断为插入排序:
对数列从左向右一次检查是否递增,当不满足时,说明插入排序正处理到此处,该处的右边序列和原来待排序的序列应保持一致,也就是这后面的部分还没有改动过。 - 如何判断为归并排序:
注意想判断这个归并排序进行到了什么程度,不能只看某一段而确定,只能每轮排序后进行整个序列的比较确定,例如1 2 3 8 4 3 1 2
的排序中的1 2 3 8 3 4 1 2
,是无法只看一部分确定当前归并的规模到了什么程度。
为了快速实现序列某一段vector数列v的有序,这用到了sort(v.begin()+i, v.begin()+i+len)
函数,函数内的i表示从i下表开始,len表示这次从i开始往后数排列几个数。
数据点 4和数据点5如果出现错误或者段错误,可以检查在归并排序的过程里,最后的不足归并规模的那些数列是如何完成排序的,看一下排序的边界是不是越界了,可以用一个比较,对越界的只取到边界。
AC例程
#include<iostream>
#include <stdio.h>
#include <algorithm>
#include <queue>
using namespace std;
bool check(vector<int>a,vector<int>b,int pos)
{
for(int i=pos;i<a.size();i++)
if(a[i]!=b[i])return false;
return true;
}
int main()
{
int n,i,j,k;
cin>>n;
vector<int>v1(n),v2(n);
for(i=0;i<n;i++)cin>>v1[i];
for(i=0;i<n;i++)cin>>v2[i];
for (j = 0; j < n&&v2[j]<=v2[j+1]; ++j) ;
if(check(v1,v2,j+1)){//范围在(0,j+1]的数列有序
cout<<"Insertion Sort"<<endl;
sort(v2.begin(),v2.begin()+j+2);
for(int k=0;k<v2.size();k++)
{
if(k!=0)cout<<' ';
cout<<v2[k];
}
}else
{
cout<<"Merge Sort"<<endl;
for( k=2;k<=v1.size();k*=2)
{
for( i=0;i<v1.size();i+=k)
sort(v1.begin()+i,v1.begin()+((i+k)>v1.size()?v1.size():i+k));
if(check(v1,v2,0))
{
k*=2;
for( i=0;i<v1.size();i+=k)
sort(v1.begin()+i,v1.begin()+((i+k)>v1.size()?v1.size():i+k));
for(int k=0;k<v1.size();k++)
{
if(k!=0)cout<<' ';
cout<<v1[k];
}
return 0;
}
}
}
return 0;
}