1051 复数乘法 (15 分) -- 数据点3

本文讲解了如何将两个复数从极坐标形式(R1e^(P1) * R2e^(P2))转换为直角坐标下的常规形式(A+Bi),并提供了详细的公式推导和示例。着重介绍了实部和虚部的计算方法,以及如何处理输出中的特殊情况,如0.00和负数形式。

1051 复数乘法 (15 分)

复数可以写成 (A+Bi) 的常规形式,其中 A 是实部,B 是虚部,i 是虚数单位,满足 i2=−1i^2=-1i2=1;也可以写成极坐标下的指数形式 (R×e(Pi)R×e^{(Pi)}R×e(Pi)),其中 R 是复数模,P 是辐角,i 是虚数单位,其等价于三角形式 R(cos⁡(P)+isin⁡(P))R(\cos(P)+i\sin(P))R(cos(P)+isin(P))

现给定两个复数的 R 和 P,要求输出两数乘积的常规形式。

输入格式:
输入在一行中依次给出两个复数的 R1,P1,R2,P2R_1,P_1,R_2,P_2R1,P1,R2,P2,数字间以空格分隔。

输出格式:
在一行中按照 A+Bi 的格式输出两数乘积的常规形式,实部和虚部均保留 2 位小数。注意:如果 B 是负数,则应该写成 A-|B|i 的形式。

输入样例:

2.3 3.5 5.2 0.4

输出样例:

-8.68-8.23i

题解

通过题目描述,可知有如下关于复数从极坐标转直角坐标的关系式:
R∗ePi=Rcos⁡P+Rsin⁡PiR*e^{Pi}=R\cos P + R\sin P iRePi=RcosP+RsinPi
相当于AAA~Rcos⁡PR\cos PRcosPBBB~Rsin⁡PiR\sin P iRsinPi
直角坐标系下两复数相乘可得到如下推导:
(A1+B1i)(A2+B2i)=(A1A2−B1B2)+(A1B2+A2B1)i \begin{aligned} &(A_1+B_1i)(A_2+B_2i)\\ &=(A_1A_2-B_1B_2)+(A_1B_2+A_2B_1)i \end{aligned} (A1+B1i)(A2+B2i)=(A1A2B1B2)+(A1B2+A2B1)i
交叉相乘展开后,对于实部通过和差公式有:
A=A1A2−B1B2=r1r2(cos⁡P1cos⁡P2−sin⁡P1sin⁡P2)=r1r2cos⁡(P1+P2) \begin{aligned} A&=A_1A_2-B_1B_2\\ &=r_1r_2(\cos P_1\cos P_2-\sin P_1\sin P_2)\\ &=r_1r_2\cos (P_1+P_2) \end{aligned} A=A1A2B1B2=r1r2(cosP1cosP2sinP1sinP2)=r1r2cos(P1+P2)
同样的,对于复数部分,有:
B=A1B2+A2B1=r1r2(cos⁡P1sin⁡P2+cos⁡P2sin⁡P1)=r1r2sin⁡(P1+P2) \begin{aligned} B&=A_1B_2+A_2B_1\\ &=r_1r_2(\cos P_1\sin P_2+\cos P_2\sin P_1)\\ &=r_1r_2\sin (P_1+P_2) \end{aligned} B=A1B2+A2B1=r1r2(cosP1sinP2+cosP2sinP1)=r1r2sin(P1+P2)
综上,最后的计算结果就是:
A+Bi=r1r2cos⁡(P1+P2)+r1r2sin⁡(P1+P2)iA+Bi=r_1r_2\cos (P_1+P_2)+r_1r_2\sin (P_1+P_2)iA+Bi=r1r2cos(P1+P2)+r1r2sin(P1+P2)i

输出的时候注意,实部和虚部无论是不是0.00都要输出。此外,在printf四舍五入的时候,-0.001是会输出-0.00,注意这种情况出现时输出正的0.00。

数据点3不过就是出现了-0.00的情况,可以写一个判断来处理。


AC例程
#include<iostream>
#include <stdio.h>
#include <math.h>
using namespace std;
int main()
{
    float r1,p1,r2,p2;
    cin>>r1>>p1>>r2>>p2;
    double A=1.0*r1*r2*cos(p1+p2),B=1.0*r1*r2*sin(p1+p2);
    if (A<0&&A>-0.005)printf("%.2f",-A);
    else printf("%.2f",A);
    if(B>=0.005){cout<<'+';printf("%.2fi",B);}
    else if(B<=-0.005){
        printf("%.2fi",B);
    }else printf("+0.00i\n");
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值