numpy的矩阵求逆

numpy的矩阵求逆

numpy中有np.linalg.inv()方法可以直接求逆,但是有时候原矩阵是无法直接求逆的,强行使用该方法会导致较大的误差;这时可以使用SVD矩阵分解的方法,舍去相关特征:

matrix
u, s, v = np.linalg.svd(matrix, full_matrices=False)#截断式矩阵分解
inv = np.matmul(v.T * 1 / s, u.T)#求逆矩阵
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值