公式
x i ′ = Θ x i + ∑ j ∈ N ( i ) x j ⋅ h Θ ( e i , j ) , \mathbf{x}^{\prime}_i = \mathbf{\Theta} \mathbf{x}_i + \sum_{j \in \mathcal{N}(i)} \mathbf{x}_j \cdot h_{\mathbf{\Theta}}(\mathbf{e}_{i,j}), xi′=Θxi+j∈N(i)∑xj⋅hΘ(ei,j),
其中, x i \mathbf{x}_i xi是节点i
的特征, Θ \mathbf{\Theta} Θ是待学习的参数矩阵, N ( i ) \mathcal{N}(i) N(i)是节点i
的所有邻接点, h Θ h_{\mathbf{\Theta}}