导语
全球领先的电池生产商弗迪电池依托 DolphinDB 成功构建实验数据实时分析平台,实现每秒百万条实验数据的实时处理与万亿级历史数据的毫秒级分析,整体数据处理时效提升200倍,实时监控延迟降至100毫秒以内。这套高性能、低延时的数据处理机制,为研发提供了科学决策依据。
一、背景介绍
作为全球新能源汽车巨头比亚迪旗下的核心动力电池单元,弗迪电池是全球领先的动力电池生产商。其实验室拥有行业最先进的电池性能检测设备,日均产生海量实验参数,年研发实验数据量达万亿级,涵盖电压、电流、温度、内阻、容量衰减等核心性能指标。
如此规模庞大的数据运作给弗迪实验室带来了双重挑战:一方面,实验室必须实时监控每一台设备的运行状态,满足纳秒级时序数据处理和多维度实时关联分析的需求;另一方面,系统还需要满足十年级历史数据秒级响应的严苛标准。
二、面临挑战
弗迪实验室原先采用 MySQL 架构支撑实验数据系统,需同时处理实时设备监控与历史研发分析两类场景。该系统通过分库分表的方式勉强维持日常运行,但在海量实验数据的冲击下,实时同步、历史查询、多维分析等核心环节均面临严重性能瓶颈,导致研发决策效率大幅受限。具体表现为:
-
数据实时同步性能差:实验设备每秒产生百万级数据点,但原有系统基于 MySQL CDC 的同步机制,延迟会超过10秒,导致数据无法及时进入分析系统,严重制约实时监控与分析的时效性。
-
系统监控预警延时高:实验室要求对设备运行状态进行实时监控,以快速响应电压异常波动、温度骤升等潜在安全风险或实验偏差。面对实验设备每秒产生的百万级数据点,原有系统依赖离线批处理模式进行监控分析,无法实现秒级的异常检测与预警。
-
数据查询性能低下: 研发团队经常需要对历史实验数据进行查询,但在原有系统中进行查询时,执行多表关联(Join)操作经常卡顿,耗时也处于十分钟级,严重拖慢了研发分析周期。
实时同步延迟高、监控预警时效差、历史查询响应慢——这三大性能瓶颈已成为制约弗迪实验室研发效能的一大关键要素。为支撑前沿的高效研发,弗迪亟需一套能够突破现有瓶颈的高性能实验数据实时分析平台。
三、解决方案
经过严格选型,弗迪实验室决定基于 DolphinDB 构建高性能实验数据实时分析平台,围绕其“百万条/秒实时同步”、“万亿级数据毫秒级分析”和“毫秒级监控预警”三大能力实现关键突破。通过 DolphinDB 秒级 CDC 实时同步、分布式存储、流计算框架等技术,实现实验数据从采集到分析的全链路高性能处理,满足研发场景下极低延时与超高并发的双重需求。

四、方案效果
使用该方案后,弗迪实验室实现了:
-
百万级/秒 CDC 同步:为解决 MySQL CDC 同步的高延迟问题,方案采用 FlinkCDC 进行数据采集,构建从 MySQL 等数据源到 DolphinDB 的高速、稳定的实时同步管道,成功将每秒超百万条实验数据点的端到端同步延迟,从原先的超过10秒大幅压缩至100毫秒以内。
-
毫秒级实时监控与预警:新方案摒弃了原有的离线批处理模式,深度集成 DolphinDB 内置的高性能流计算框架,确保对持续流入的数据进行实时处理。此外,DolphinDB 内置10+流计算引擎,可以执行复杂的规则计算(如阈值判断、突变检测、模式识别)和状态跟踪,预警延迟被严格控制在100毫秒以内。
-
万亿级数据秒级查询:弗迪实验室基于 DolphinDB 分布式存储引擎,采用数据分区的策略对数据进行管理。针对海量历史数据查询慢这一痛点,新方案在进行查询时利用分区剪枝优化技术,显著减少无效数据扫描范围,将原本需要耗时几分钟的查询操作压缩至秒级完成,极大提升历史数据的检索效率。
通过 DolphinDB 高性能实验数据实时分析平台的落地,弗迪实验室实现了效能跃升与数据价值释放。在技术层面,系统整体数据处理时效提升200倍,实验报告的生成时间从5分钟缩短至5秒以内;实时监控预警延迟则被压缩至100毫秒以内。
在管理价值层面,DolphinDB 极致的数据处理能力使得数据驱动实时决策成为可能。同时,万亿级历史数据也从“沉睡”资产变为可挖掘的资源,数据价值得以充分释放,进一步提升弗迪实验室的研发竞争力。