新手学习yolov8目标检测小记1--YOLOv8复现

一、复现

        网上有很多教程,复现yolov8的目标检测。在复现的过程中,会用到模型yolov8n.pt,可以选择命令下载和网站下载。复现后,runs文件包下会生成最优的权重文件best.py,在ultralytics/assets中放一张图片,按照remead指示,输入命令,用权重文件best.py做预测。运行之后,runs/detect/predict中的图片就是预测识别之后的。

二、数据集

1、准备

        搜集一些你需要进行目标检测的图片,比如网上下载、自行拍摄等,可以使用旋转个、放大、缩小、调亮度的方式,对数据进行扩增。代码如下:需要修改第83行的文件夹路径,改为自己存放图片的路径即可。

# -*- coding: utf-8 -*-

import cv2
import numpy as np
import os.path
import copy


# 椒盐噪声
def SaltAndPepper(src, percetage):
    SP_NoiseImg = src.copy()
    SP_NoiseNum = int(percetage * src.shape[0] * src.shape[1])
    for i in range(SP_NoiseNum):
        randR = np.random.randint(0, src.shape[0] - 1)
        randG = np.random.randint(0, src.shape[1] - 1)
        randB = np.random.randint(0, 3)
        if np.random.randint(0, 1) == 0:
            SP_NoiseImg[randR, randG, randB] = 0
        else:
            SP_NoiseImg[randR, randG, randB] = 255
    return SP_NoiseImg


# 高斯噪声
def addGaussianNoise(image, percetage):
    G_Noiseimg = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    G_NoiseNum = int(percetage * image.shape[0] * image.shape[1])
    for i in range(G_NoiseNum):
        temp_x = np.random.randint(0, h)
        temp_y = np.random.randint(0, w)
        G_Noiseimg[temp_x][temp_y][np.random.randint(3)] = np.random.randn(1)[0]
    return G_Noiseimg


# 昏暗
def darker(image, percetage=0.9):
    image_copy = image.copy()
    w = image.shape[1]
    h = image.shape[0]
    # get darker
    for xi in range(0, w):
        for xj in range(0, h):
            image_copy[xj, xi, 0] = int(image[xj, xi, 0] * percetage)
            image_copy[xj, xi, 1] = int(image[xj, xi, 1] * percetage)
            image_copy[xj, xi, 2] = int(image[xj, xi, 2] * percetage)
    return image_copy


# 亮度
def brighter(imag
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值