RDD和DataFrame的区别

本文对比了RDD和DataFrame在大数据处理中的性能差异,指出DataFrame由于其列式存储和schema特性,执行效率高于RDD,尤其在数据过滤方面优势明显。同时介绍了SparkSQL的底层优化机制。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1.RDD在创建之后,你知道有这个类,但是你不知道他的内部结构的,DataFrame是以列式存储,它有schema是可以知道的。

2.DataRrame比RDD的执行效率要高一点,因为在大数据的处理中,RDD即使用mappartition或者foreachRDD都要消耗不少的core,但是DataFrame他可以进行sql操作,先过滤掉一部分数据,在RDD中是不好实现的。

3.SpakSQL在执行的时候是有底层优化的

具体了解可以借鉴这篇文章https://www.jianshu.com/p/c0181667daa0

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值