PSNR与SSIM对于彩色图像和灰度图像的计算区别

PSNR与SSIM是衡量图像质量的指标,灰度图像计算PSNR是通过比较每个像素与真实图像的差距,而SSIM则使用高斯窗口滑动计算。对于彩色图像,通常将RGB各通道的PSNR或SSIM均值取平均,或者仅计算YCbCr的Y分量。Python库提供了自动计算平均值的功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  PSNR具体公式可以参考图像质量评价指标之PSNR和SSIM
  SSIM的计算公式讲解可参考图像质量评估算法SSIM。在实际应用中,一般采用高斯函数来计算两图像的均值、方差以及协方差,而不采用逐像素遍历。
  对于灰度图像来说,它只有单通道,那么PSNR的计算流程为计算处理后图像每一个像素与真实图像对应像素的差距,随后求平均。SSIM则是每次计算都从图像上(处理图像与真实图像)取一个高斯NxN的窗口,然后不断滑动窗口进行计算(即卷积),最后取平均值作为全局的SSIM。
  对于彩色图像来说,一般由三通道组成,我们以RGB图像为例。一般对于它的质量指标计算有两种方法:
【1】分别计算 RGB 各个通道上的 PSNR\SSIM均值,然后取平均值(除以3)。
【2】将图像转换为YCbCr格式,然后只计算Y分量(亮度分量)的PSNR\SSIM。
一般来说用第一种方法比较多,当然,我们常用Python库中的mean()方法一般都会直接帮我们计算好最终的均值结果,不必我们手动再除以3:
以PSNR的python计算代码为例:

def psnr(img1, img2): 
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值