[CF850B]Arpa and a list of numbers

探讨了在有限操作次数下,如何通过增加数字或删除数字的策略,使得一组数字的GCD不为1的问题。介绍了算法思路,利用质因子讨论区间内数值调整的最优解,并提供了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

请参考这篇博客

题目

传送门 to VJ

题目概要
有两种操作:

  • 删除一个数,代价 x x x
  • 将该数字增加一,代价 y y y

用最少的代价使得所有数字的 gcd ⁡ \gcd gcd 不为一,或者删除了所有数字。

数据范围与约定
数字个数 n ≤ 5 × 1 0 5 n\le 5\times10^5 n5×105 x , y ≤ 1 0 9 x,y\le 10^9 x,y109 且数字 a i ∈ ( 0 , 1 0 6 ] a_i\in(0,10^6] ai(0,106]

思路

考虑 gcd ⁡ \gcd gcd 中的一个质因子 p p p 即可。

现在我们对于一个区间 ( k p , k p + p ] (kp,kp+p] (kp,kp+p] 的数,我们讨论哪些值需要被增加到 k p + p kp+p kp+p ,剩下的数字删掉。这可以用前缀和快速求(一个求和,一个求数量)。总复杂度是 O ( a ) \mathcal O(a) O(a) 的。

有关复杂度的事儿:调和级数 均摊 O ( ln ⁡ n ) \mathcal O(\ln n) O(lnn) 的,质数个数为 O ( n ln ⁡ n ) \mathcal O(\frac{n}{\ln n}) O(lnnn) ,所以我们认为 T ( n ) = ∑ p ∈ P O ( ⌊ n p ⌋ ) = O ( n ) T(n)=\sum_{p\in\Bbb P}\mathcal O\left(\left\lfloor\frac{n}{p}\right\rfloor\right)=\mathcal O(n) T(n)=pPO(pn)=O(n)

其中 P \Bbb P P 是质数集。可是均摊能不能直接用来估计呢? O n l y    T i m e    W i l l    T e l l . \sout{\tt Only\;Time\;Will\;Tell.} OnlyTimeWillTell.

代码

请看文首的代码。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值