《Toward Highly Secure Yet Efficient kNN Classification Scheme on Outsourced Cloud Data》
Lin Liu, Jinshu Su, Ximeng Liu, Rongmao Chen, Kai Huang, Robert H Deng, Xiaofeng Wang Toward Highly Secure Yet Efficient KNN Classification Scheme on Outsourced Cloud Data[C]. the internet of things, 2019, 6(6): 9841-9852.
以下内容为自己看论文时的笔记,如有不足之处还往大家多多指正。
摘要
目前,将数据和机器学习任务,如k近邻分类(KNN)外包给云计算,已成为大规模数据存储、管理和处理的一种可扩展且经济有效的方法。然而,在将数据外包给云计算时,数据安全和隐私问题一直是一个严重的问题。本文提出了一种基于加同态密码体制和秘密共享的双云模型下的云数据保密KNN分类方案。与已有的工作相比,我们重新设计了一组轻量级的构造块,如安全平方欧几里德距离、安全比较、安全排序、安全最小和最大数查找、安全频率计算等,达到了相同的安全级别,但效率更高。在我们的方案中,数据所有者保持离线,这与基于安全多方计算的解决方案不同,后者要求数据所有者在计算期间保持在线。此外,查询用户除了发送查询数据和接收查询结果外,不会与云交互。我们的安全分析表明,该方案保护了外包数据的安全性和查询隐私,并隐藏了访问模式。在真实数据集上的实验表明,我们的方案比现有的方案具有更高的效率。
实现了语义安全、查询隐私、
保护了数据访问模式、支持离线、
计算开销为o(nk),通信开销o(nk||N)
kNN应用
k近邻(k- neest -neighbor, KNN)分类作为最基本的机器学习操作之一,被广泛应用于医学信息学[4]、入侵检测[5]、异常网络流量识别等诸多领域[6]。
适用的场景以及需要满足的隐私要求
本文的灵感来自以下场景。假设有一个云从数据所有者那里收集了大量敏感数据。有了这些数据,云就有能力提供KNN分类服务。该方案中还有一些查询用户,即KNN分类服务用户。在这种情况下,应满足以下三个隐私要求。
1) 外包数据安全:由于即将外包的数据是敏感的,因此不应向对手披露。<