Reddy B P, Chatterjee A. Encrypted Classification Using Secure K-Nearest Neighbour Computation.[J]. Space, 2019: 176-194.
该论文是19年Reddy等人发表在Space期刊上,以下内容是本人在阅读该论文时的一些读书笔记整理,若有不足之处欢迎指正。
摘要:
对FHE数据的处理不能直接按照传统的指令执行流程进行,需要基于特殊电路的算法表示。
在本文中,我们着重于在加密数据上实现k近邻(KNN)计算,其中数据使用广义加密表示存储。
这种表示法可以很容易地扩展到支持多个加密学习者的加密集成学习框架中,以获得更高的精度。
本文指出secure knn classification using VHE(2018)只适用于低维度的加密数据,关于secure kNN classification using VHE ,我上传的资源中有个关于他的PPT汇报,有兴趣的也可以去看看。
安全性:
尽管云计算有很多承诺,但安全性仍然是使云适应全球应用程序的主要瓶颈。
由于对谁可以访问敏感数据的控制不完全,以及对进出云应用程序的数据的监视能力有限,因此从云域窃取数据非常常见。
为什么要如此重视云计算的安全性?以及如何实现云数据安全?
如何实现云数据安全:
最直接的方式就是对所有的数据做加密处理,FHE可以在密文上做处理,但是所有现有的FHE方案是基于电路设计的,不适用于传体算法的非电路表示。因此需要对加密形式的数据进行分类或者回归分析,要将合适的算法转化为相应的加密算法
注意:这个方案是不完整的,并且在某种程度上同态的,因为操作之后的结果超过了素数模数p(噪音过大?),那么解密就失败了。(即最后的结果c>p)
为了解决该问题,Gentry通过生成一个包含解密提示的公钥来解决这个问题。此提示允许对加密域中的中间结果进行同构解密,这意味着参数的明文仍然未知。有了密文空间中的明文,就有可能对明文进行重新加密,从而产生