这就是Keras(三)Dense层

本文深入探讨了Keras中的Dense层,它等同于全连接层。Dense层通过激活函数进行逐元素运算,权重由权值矩阵和偏置向量构成。当输入数据超过二维时,会先将其转换为适合运算的形状。文中提供了一个使用示例。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Dense层

keras.layers.core.Dense(units, activation=None, use_bias=True, 

kernel_initializer='glorot_uniform', bias_initializer='zeros',
 kernel_regularizer=None, bias_regularizer=None, 
activity_regularizer=None, kernel_constraint=None, bias_constraint=None)

 Dense就是常用的全连接层,所实现的运算是output = activation(dot(input, kernel)+bias)。其中activation是逐元素计算的激活函数,kernel是本层的权值矩阵,bias为偏置向量,只有当use_bias=True才会添加。

如果本层的输入数据的维度大于2,则会先被压为与kernel相匹配的大小。

这里是一个使用示例:

 

# as first layer in a sequential model:
# as first layer in a sequential model:
model = Sequential()
model.add(Dense(32, input_shape=(16,)))
# now the model will take as input arrays of shape (*, 16)
# and output arrays of shape (*, 32)

# after the first layer, you don't need to specify
# the size of the input anymore:
model.add(Dense(32))

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值