huggingface使用与环境移植

本文介绍了如何在在线和离线环境下使用Conda和pip管理PyTorch、transformers等库,以及如何在离线情况下下载和使用预训练的Bert模型,包括git-lfs的使用技巧。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

环境

在线

conda create -n torch110 python=3.7
conda activate torch110
conda install pytorch==1.10.0 torchvision==0.11.0 torchaudio==0.10.0 cudatoolkit=11.3 -c pytorch -c conda-forge
pip install transformers==4.30.0

离线

# 原环境打包 待打包环境需提前安装conda-pack(conda install conda-pack)
conda-pack -n <env_name> [-o <zip_name>]

# 解压为新环境 解压到anaconda的env目录下即可
mkdir <env_name>
tar -zxvf <evn_name>.tar.gz -C <env_name>

Bert

# 测试程序
from transformers import BertTokenizer, BertModel

# 离线若提示没有模型“bert-base-uncased”可以尝试将参数替换为“./bert-base-uncased”
tokenizer = BertTokenizer.from_pretrained('bert-base-uncased')
model = BertModel.from_pretrained("bert-base-uncased")
text = "Replace me by any text you'd like."
encoded_input = tokenizer(text, return_tensors='pt')
output = model(**encoded_input)
print(output)

在线

直接运行测试程序,将自动下载相关模型(上例中为“bert-base-uncased”)

离线

  1. 将仓库下载到本地

    # 在git中执行一次即可
    git lfs install
    
    # GIT_LFS_SKIP_SMUDGE=1表示不下载大文件(大文件一般为参数文件,分别对应不同深度学习框架,一般只需要手动下载pytorch版本即可)
    GIT_LFS_SKIP_SMUDGE=1 git clone git@hf.co:bert-base-uncased
    
  2. 运行测试程序

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

MallocLu

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值