目标检测常用损失函数

本文深入探讨目标检测中的各类损失函数,包括IoU、GIoU、DIoU、CIoU、L1、L2及SmoothL1损失。通过实例解释它们的工作原理、优缺点,帮助理解这些损失函数在神经网络训练中的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

学习目标检测的同学一定对损失函数非常头疼。在求分类时会遇到0-1损失,交叉熵损失,在求回归框的时候需要用到L1损失、L2损失以及各种IoU损失。而我们本身又不是很了解这些损失函数,网上的教程大多是走数学推理的路子,让人费解。这篇文章就带大家从原理层及应用层一起深入了解一下目标检测中的各类损失函数。


损失函数就是一个评价神经网络的老师。在训练过程,是将神经网络的预测值和真实值做比较。当预测值和真实值较大时,损失较大,当预测值和真实值较小时,损失较小。为什么要对同一个问题设计各种形式的损失?需要在不断的实验中找到更加专业的老师(更好的评价指标),这样神经网络才能在学习过程中拥有更高的效率。

  • 损失一:IoU损失。
    • 计算分为两步
      • 第一步:计算IoU:A为预测框,B为真实框

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值