MMCV - dataset_analysis.py 可视化检测和跟踪任务自定义数据集神器

本文介绍了如何利用MMCV提供的dataset_analysis.py工具来可视化自定义检测和跟踪数据集的信息,包括类别和bbox实例的分布图。此工具适用于mmyolo框架,但不适用于mmdetection和mmtracking。要使用该工具,只需提供config文件并确保数据路径和类别设置正确。

做视觉检测跟踪任务时,我们需要在论文插图中体现出我们数据集的信息,这个时候就有一个非常好用的神器:dataset_analysis.py的文件。该文件能够帮助用户直接可视化custom数据集的bbox实例信息,如上图所示,包括:显示类别和 bbox 实例个数的分布图;显示类别和 bbox 实例宽/高比例的分布图;显示类别和 bbox 实例个数的分布图;显示类别和 bbox 实例面积的分布图。该文件的位置为:C:\Users\dingjiangang\Desktop\mmd_all\mmyolo\mmyolo-0.4.0\tools\analysis_tools\dataset_analysis.py (mmdetection和mmtracking等框架中不含,只有mmyolo才有)。</

### 使用 `train_bash.py` 进行模型训练并设置参数 为了通过 Python 脚本进行模型训练,通常需要配置一系列环境变量以及传递必要的参数给训练脚本。以下是关于如何使用 `train_bash.py` 设置 `model_name_or_path` `dataset` 参数的具体说明。 #### 环境准备 在运行脚本之前,确保已经安装了所需的依赖库,并且设置了正确的计算资源(如 GPU)。如果涉及分布式训练,则需进一步配置 PyTorch 的分布式环境[^2]。 #### 配置环境变量 可以通过 Bash 命令设置环境变量,这些变量会被后续的 Python 脚本读取。例如: ```bash export MODEL_NAME_OR_PATH="path/to/your/model" export DATASET="path/to/your/dataset" ``` 上述命令分别指定了模型路径 (`MODEL_NAME_OR_PATH`) 数据集路径 (`DATASET`)。这一步骤对于加载预训练模型自定义数据至关重要[^3]。 #### 编写 `train_bash.py` 假设 `train_bash.py` 是一个用于启动训练流程的脚本,其核心功能可能是调用其他模块完成具体任务。以下是一个可能的实现方式: ```python import os from ..hparams import get_train_args # 导入超参配置函数[^4] def main(): # 获取环境变量 model_name_or_path = os.getenv("MODEL_NAME_OR_PATH", None) dataset = os.getenv("DATASET", None) if not (model_name_or_path and dataset): raise ValueError("Both 'MODEL_NAME_OR_PATH' and 'DATASET' must be set.") # 解析训练参数 args = get_train_args(model_name_or_path=model_name_or_path, dataset=dataset) # 执行训练逻辑 print(f"Starting training with model: {args.model_name_or_path} and dataset: {args.dataset}") if __name__ == "__main__": main() ``` 此代码片段展示了如何从环境变量中提取必要参数,并将其作为输入传入训练过程中。 #### 启动训练 最后,在终端中执行如下命令以启动训练: ```bash bash train_bash.py --model_name_or_path $MODEL_NAME_OR_PATH --dataset $DATASET ``` 这里利用了前面设定好的环境变量 `$MODEL_NAME_OR_PATH` `$DATASET` 来动态调整训练配置。 --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

刚哥吧

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值