(阅读笔记)VoxelNet: End-to-End Learning for Point Cloud Based 3D Object Detection

本文探讨了VoxelNet如何解决点云数据的不规则性和密集性问题,通过体素网格特征学习和稀疏卷积技术,实现了端到端的三维目标检测。VoxelNet贡献在于其体素特征编码VFE和三维RPN,以及对FasterRCNN的扩展。核心内容包括点云处理策略、特征学习网络和损失函数优化。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动机和贡献

  • 动机
    (1)点云特性:密度不均匀和不规则性
    (2)人工特征工程:具有场景局限性,不能学习特征不变性,复杂场景(自主导航)收效甚微;
    (3)直接消耗点云的工作:PointNet和PointNet++直接学习稀疏点云特征,但实验是处理的1k点的点云,实际点云密度远远大于这个,将导致巨额计算和内存开销。
    【研究方向:人工特征(鸟瞰投影)–>机器学习特征(体素网格特征)】

  • 贡献
    (1)提出了一种端到端可训练的基于点云的三维检测深度架构VoxelNet,直接操作稀疏的三维点,避免了手工特征工程引入的信息瓶颈。
    (2)我们提出了一种有效的实现体素网的方法(体素特征编码VFE),该方法既受益于稀疏点结构,又受益于体素网格上的高效并行处理。

VoxelNet网络

在这里插入图片描述

  1. 特征学习网络
    (1)3D体素网格拆分和点云分组(每个网格中的点不均匀)
    (2)随机抽样:我们从包含超过T个点的体素中随机抽取固定数量的点T。(两个目的:节省计算开销;减少体素间点的不平衡,减少了采样偏差,增加了训练的多样性。)
    (3)体素特征编码VFE:将每个点坐标重新表示为7维向量;FCN网络(线性层+BN+ReLU);Maxout局部聚合;全局-局部的连接特征。(将不规则、稀疏的点云坐标表示为规则、稠密的点云-体素特征)
    在这里插入图片描述
  2. 稀疏卷积神经网络(跨连接、多尺寸感受野特征拼接)
    在这里插入图片描述
  3. 区域建议网络RPN
    【参考Faster RCNN的二维RPN,将其扩展至三维RPN,回归生成三维目标边界框。】
  • 三维边界框回归
    在这里插入图片描述
    在这里插入图片描述
  • 损失函数(正负样本分类损失+边界框回归损失)
    在这里插入图片描述
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值