VoxelNet
动机和贡献
-
动机
(1)点云特性:密度不均匀和不规则性
(2)人工特征工程:具有场景局限性,不能学习特征不变性,复杂场景(自主导航)收效甚微;
(3)直接消耗点云的工作:PointNet和PointNet++直接学习稀疏点云特征,但实验是处理的1k点的点云,实际点云密度远远大于这个,将导致巨额计算和内存开销。
【研究方向:人工特征(鸟瞰投影)–>机器学习特征(体素网格特征)】 -
贡献
(1)提出了一种端到端可训练的基于点云的三维检测深度架构VoxelNet,直接操作稀疏的三维点,避免了手工特征工程引入的信息瓶颈。
(2)我们提出了一种有效的实现体素网的方法(体素特征编码VFE),该方法既受益于稀疏点结构,又受益于体素网格上的高效并行处理。
VoxelNet网络
- 特征学习网络
(1)3D体素网格拆分和点云分组(每个网格中的点不均匀)
(2)随机抽样:我们从包含超过T个点的体素中随机抽取固定数量的点T。(两个目的:节省计算开销;减少体素间点的不平衡,减少了采样偏差,增加了训练的多样性。)
(3)体素特征编码VFE:将每个点坐标重新表示为7维向量;FCN网络(线性层+BN+ReLU);Maxout局部聚合;全局-局部的连接特征。(将不规则、稀疏的点云坐标表示为规则、稠密的点云-体素特征)
- 稀疏卷积神经网络(跨连接、多尺寸感受野特征拼接)
- 区域建议网络RPN
【参考Faster RCNN的二维RPN,将其扩展至三维RPN,回归生成三维目标边界框。】
- 三维边界框回归
- 损失函数(正负样本分类损失+边界框回归损失)