(阅读笔记)Cooper: Cooperative Perception for Connected Autonomous Vehicles based on 3D Point Clouds

本文探讨了Cooper在解决单辆车辆检测精度和感知范围问题上的动机,其主要贡献在于实现了原始点云数据的融合。通过相对位置校准和旋转角度对齐,Cooper优化了点云数据的融合过程。此外,它采用了VoxelNet网络(包括VFE、SpareCNN和RPN)进行点云目标检测,提升了车辆检测的准确性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

动机和贡献

  1. 动机:单个车辆的检测精度(由于障碍物遮挡等)和感知范围(由于传感器性能等)问题;
  2. 贡献:原始点云数据的融合;

Cooper

  1. 点云数据融合:发送车辆与接收车辆的相对位置校准;旋转角度对齐;
    在这里插入图片描述
    在这里插入图片描述
  2. 点云目标检测:采用VoxelNet网络(VFE;Spare CNN;RPN)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值