凝思6.0.80配置pytorch-gpu+cuda深度学习环境全流程

1、下载安装linux显卡驱动

确认好自己的显卡型号后,去官网下载显卡对应的驱动,这里是网址:显卡驱动下载链接

  1. 以防万一,先给.run文件权限:进管理员后,目录下chmod a+x XXXX.run
  2. 运行.run文件:./XXXX.run -no-x-check -no-nouveau-check -no-opengl-files
  3. 安装成功后,使用nvidia-smi查看驱动版本,出现下图,说明安装成功
    在这里插入图片描述
    其中Driver Version是设备驱动程序的版本号;
    Quadro P1000是的显卡版本号;
    CUDA Version是该NVIDIA驱动程序兼容的CUDA工具包的版本号,第3章 安装conda会用到

2、安装anacondas(可选)

由于笔者linux系统无法安装3.11版本以上的python,所以选择安装anacondas
这里是网址:anacondas下载链接,请根据自己系统的架构选择对应文件,例如:x86_64
查看自己的架构:uname -a

  1. 以防万一,先给.sh文件权限:进管理员后,目录下chmod a+x XXXX.sh
  2. 运行.sh文件:./XXXX.sh,看到“ENTER”就按回车,看到“MORE”就继续按回车,一直按到出现“please answer ‘yes’ or ‘no’”,输入yes,默认安装位置,回车之后等待安装完成
  3. 安装成功后,开始配置环境变量
 vim /etc/profile //输入export PATH=/root/anaconda3/bin:$PATH(修改为自己的路径)

环境变量修改完成后,使用source /etc/profile刷新配置
4. 使用conda -V查看安装和环境变量是否成功
出现以下信息即为成功(以自己版本为主)

### 回答1: PyTorch-GPUCUDA版本对应如下: PyTorch-GPU 1..CUDA 9. PyTorch-GPU 1.1.CUDA 9.CUDA 10. PyTorch-GPU 1.2.CUDA 9.CUDA 10.CUDA 10.1 PyTorch-GPU 1.3.CUDA 9.2、CUDA 10.CUDA 10.1 PyTorch-GPU 1.4.CUDA 10.CUDA 10.1、CUDA 10.2 PyTorch-GPU 1.5.CUDA 10.1、CUDA 10.2 PyTorch-GPU 1.6.CUDA 10.1、CUDA 10.2、CUDA 11. PyTorch-GPU 1.7.CUDA 10.1、CUDA 10.2、CUDA 11. PyTorch-GPU 1.8.CUDA 11.1 PyTorch-GPU 1.9.CUDA 11.1、CUDA 11.2 需要注意的是,不同版本的PyTorch-GPU可能需要不同版本的CUDA才能正常运行。因此,在安装PyTorch-GPU时,需要根据自己的CUDA版本选择相应的PyTorch-GPU版本。 ### 回答2: PyTorch是一个流行的深度学习库,支持使用GPU加速算法运行以提高训练速度。在PyTorch中,CUDA是一种用于在NVIDIA GPU上加速计算的并行计算平台和API集合。因此,PyTorchGPU功能需要与CUDA版本兼容。 PyTorchGPU支持是通过与CUDA库进行交互来实现的。由于PyTorchCUDA的版本兼容性问题,所以要使用GPU功能,需要确保安装有与PyTorch版本兼容的CUDA库。常见的PyTorch版本与CUDA版本对应关系如下: - PyTorch 1.0.x 对应 CUDA 9.0 - PyTorch 1.1.x-1.2.x 对应 CUDA 10.0 - PyTorch 1.3.x 对应 CUDA 10.1 - PyTorch 1.4.x-1.5.x 对应 CUDA 10.2 需要注意的是,不同的PyTorch版本和不同的GPU型号可能有不同的CUDA版本要求。因此,在使用GPU加速算法时,需要根据具体情况选择合适的PyTorch版本和CUDA版本。 总之,为了确保PyTorch能够充分利用GPU的加速能力,需要安装正确版本的CUDA库,并确保与PyTorch版本兼容。通过此功能使用GPU加速可以加快训练速度,提高模型性能。 ### 回答3: PyTorch是一个基于Python的开源机器学习框架,具有广泛的应用和活跃的社区支持。PyTorch可以在CPU和GPU上运行,而使用GPU的最简单方法是使用CUDA(Compute Unified Device Architecture)工具包。CUDA是由NVIDIA开发的并行计算平台和应用程序接口,用于在GPU上进行高性能计算。因此,PyTorch需要与正确版本的CUDA协同工作,以在GPU上实现最佳性能。 不同版本的PyTorch对应着不同版本的CUDA,因此在安装PyTorch之前需要确定使用哪个版本的CUDA。在PyTorch官网上推荐使用的版本如下: PyTorch 1.7.x:CUDA 10.1,CUDA 10.2或CUDA 11.0 PyTorch 1.6.x:CUDA 10.1,CUDA 10.2或CUDA 11.0 PyTorch 1.5.x:CUDA 10.1或CUDA 10.2 PyTorch 1.4.x:CUDA 10.1 PyTorch 1.3.x:CUDA 10.1 PyTorch 1.2.x:CUDA 9.2 需要注意的是,不同版本的CUDA需要特定的GPU架构才能运行,因此在安装CUDA之前,需要先了解自己的GPU支持哪些架构。此外,为了避免因为版本不匹配而发生不必要的打扰或错误,建议在安装PyTorch之前也检查一下自己机器上CUDA的版本。如果是多个版本共存,则需要设置环境变量以指示使用哪个版本。 总之,在安装和使用PyTorch时,需要对应选择正确的CUDA版本,以保证在GPU上获得最佳性能和稳定性。同时,需要了解自己机器上GPU的性能和支持的CUDA版本,以避免不必要的打扰和错误。
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值