自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(209)
  • 资源 (6)
  • 收藏
  • 关注

原创 AI 大模型应用学习路线-2025,学完高薪不是梦

核心概念:RAG(检索增强生成)解决的实际问题与优势。工作原理:从检索到生成的完整流程解析。

2025-06-13 21:44:04 1001

原创 最全大模型术语表,从入门到入土,​​从此告别小白!​

预定义模型是由 AI 厂商训练并提供的现成模型,用户可以直接调用而无需自行训练。这些闭源模型(如 GPT-4、Claude 等)通常经过大规模训练和优化,能力强大且易于使用,适合快速开发应用或缺乏自主训练资源的团队。

2025-06-10 22:30:26 1201

原创 MCP消息协议和传输协议(Java角度)

作为Java程序员,你可以将和的关系类比为。以下是具体解析:tool_callparametersNetty。

2025-07-22 22:25:16 589

原创 以Java程序员角度理解MCP

MCP ≈ AI版的Dubbo:标准化模型与工具的交互协议,解决异构系统集成问题。对Java程序员的价值可用熟悉的RPC思维理解AI集成(JSON-RPC替代HTTP API)。通过Java SDK快速开发MCP服务/客户端,复用现有微服务技能。一句话:MCP让大模型像调用本地方法一样安全操作数据库、API等资源,而Java开发者是这套体系的“基础设施搭建者”。

2025-07-22 22:13:05 455

原创 从Java到大模型应用:10天拿下5个Offer,我的转型逆袭之路

Java开发仍然有市场,但AI大模型才是未来。如果你还在犹豫,不妨想想:3年后,Java CRUD开发是否会被AI取代?5年后,你的薪资还能涨吗?风口来了,不把握就没了!现在正是入局AI大模型的黄金期,与其在红海市场挣扎,不如主动拥抱新技术,实现职业跃迁!PS:如果你对转型AI大模型感兴趣,可以关注我的CSDN博客,后续会分享更多实战经验和学习资料!准备做一个免费入门教程,但是要看我精力够不够。(不是卖课的)欢迎在评论区讨论,留下你的看法!

2025-07-19 10:08:42 271

原创 CMD,PowerShell、Linux/MAC设置环境变量

(Windows/Linux):需要管理员权限。:仅在当前终端窗口有效,关闭后失效。:写入配置文件或注册表,长期有效。:适用于测试,关闭终端后失效。

2025-07-10 11:48:47 450

原创 Transformer、BERT、GPT以及Embedding之间的关系

"BERT分类模型"和"GPT生成模型"是正确的,但Embedding不是独立的一类,而是这些模型的中间产物。独立存在的"Embedding模型"(如OpenAI的text-embedding-ada-002)通常是。Transformer分为两大类应用,但划分标准不是"分类vs生成",而是。(类似BERT)训练的,专门用于生成高质量的文本向量表示。Embedding(嵌入)是。

2025-07-09 09:08:51 519

原创 Safetensors与大模型文件格式全面解析

Safetensors是一种专为存储大型张量数据设计的文件格式,由HuggingFace团队开发,旨在提供安全高效的模型参数存储解决方案。下面我将详细介绍Safetensors格式及其特点,并全面梳理当前主流的大模型文件格式。

2025-07-08 17:18:44 578

原创 Nginx安装

由于nginx是基于c语言开发的,所以需要安装c语言的编译环境,及正则表达式库等第三方依赖库,如在。下载地址:https://nginx.org/en/download.html。上可以如下执行依赖安装,其他系统切换对应的安装方式进行依赖安装。可以选择稳定版本,或者按照自己需求下载对应版本。默认端口是80,如果冲突,可在配置文件中修改。运行下面两条命令,默认安装到。

2025-07-07 18:46:07 330

原创 ML Kit 介绍

定位:ML Kit是一个移动端SDK,将Google的机器学习技术封装为可离线运行的解决方案,支持实时处理摄像头输入等场景。关键优势离线运行:所有处理在设备端完成,保障数据隐私并支持无网络环境使用。跨平台:兼容Android和iOS,提供统一的API接口。易用性:通过高级API简化开发,例如几行代码即可实现文本识别或人脸检测。

2025-07-06 10:29:45 289

原创 PyTorch里.pt和.pth的区别

本质差异.pt是“完整存档”,.pth是“参数快照”。实践建议:优先使用.pt确保兼容性,仅在参数共享时用.pth。

2025-06-30 14:21:30 552

原创 YOLOv8快速入门

YOLOv8 在训练中使用了COCO数据集数据集地址,包含超过20万张图像,涵盖80类常见物体(如人、车辆、动物、日常用品等),支持目标检测、实例分割等任务。下面以头盔数据集为例数据集下载地址。

2025-06-27 11:26:39 437

原创 PostgreSQL与MySQL深度对比:为何Dify选择PostgreSQL作为核心数据库

PostgreSQL和MySQL都是优秀的开源数据库,但设计哲学和适用场景存在明显差异。Dify选择PostgreSQL作为默认数据库,充分考虑了其在数据一致性、复杂查询能力、扩展性以及与向量数据库协同工作等方面的综合优势。随着应用系统越来越复杂,对数据处理的要求也越来越高,PostgreSQL在"严格标准、丰富功能、可靠事务"方面的坚持,使其成为现代数据密集型应用的理想选择。而MySQL则继续在简单易用、高并发读取的传统Web应用领域保持其重要地位。

2025-06-20 11:05:43 995

原创 Keras是什么

Keras作为高层API,与TensorFlow深度集成,而PyTorch则提供另一种灵活选择。对于大多数用户,直接使用TensorFlow内置的tf.keras是最佳实践,无需单独安装。若需独立版或特定后端支持,需注意版本兼容性。

2025-06-18 09:08:19 287

原创 Dify与LangChain:可视化平台与代码框架的共存价值

在当今大模型应用开发领域,Dify和LangChain代表了两种不同的开发范式。Dify作为可视化低代码平台,确实大幅降低了AI应用开发门槛,但LangChain作为代码框架仍然有其不可替代的价值。

2025-06-16 16:39:06 569

原创 世界模型——真正能“颠覆世界”的AI革命

世界模型是指一个智能系统(无论是生物大脑还是人工系统)为了理解和预测其环境而构建的内部表示或认知框架。简单来说,它是系统对"世界如何运作"的理解和假设的集合。在人类认知中,世界模型相当于我们大脑中对物理规律、社会规范、因果关系等概念的内部表征。而在人工智能中,世界模型则是算法对环境动态、实体关系和行为后果的数学表达。世界模型:旨在模拟现实世界的物理规律、因果关系和动态变化,构建对环境的内部表征,使AI能够像人类一样通过“想象”预演行动后果,实现反事实推理(即回答“如果采取不同行动会如何”的问题)。

2025-06-15 11:51:43 1090

原创 如何编写高效的Prompt:从入门到精通

Prompt是与AI模型交互时输入的指令或问题,它告诉AI你希望它做什么。可以把Prompt想象成给AI下达的任务书——任务书越清晰明确,AI完成得就越好。编写高效的Prompt是一项可以通过练习不断提升的技能。记住,好的Prompt就像好的问题一样,已经包含了答案的种子。通过本文介绍的原则和技巧,你现在已经具备了编写专业级Prompt的基础知识。实践是提高的关键,所以不妨现在就尝试为你的下一个AI交互设计一个精心构思的Prompt吧!

2025-06-14 22:30:48 1041

原创 DeepSeek介绍

DeepSeek是一家主攻大模型研发与应用的中国AGI科技公司,其开源推理模型DeepSeek-R1凭借强化学习技术,在数学、代码、自然语言推理等任务上性能比肩OpenAI o1正式版且可免费商用。它能为用户提供智能对话、文本生成、代码补全、文件读取等多场景应用,而从入门到精通的关键在于理解推理模型与通用模型的差异,掌握提示语设计策略,包括精准定义任务、分解复杂问题、合理运用指令驱动与需求导向等方法,同时规避幻觉生成、过度指令等常见陷阱,以实现高效的人机协作。公司与模型简介。

2025-06-14 16:17:57 874

原创 TensorFlow 与 PyTorch区别

PyTorch 在学术界和开源社区的主导地位日益增强(如 Hugging Face 的 NLP 模型库),而 TensorFlow 在工业界(尤其是 Google 生态)仍占优势。两者均在向“动态图 + 静态图编译”融合的方向发展(如 PyTorch 2.0 的。和 TensorFlow 的 Eager Execution)。

2025-06-13 09:31:44 1129 1

原创 pt模型转tflite格式的血与泪

用yolov8n训练完手势数据后,需要用到安卓移动端,所以需要转为tflite格式,不清楚各种格式的可以看我另一篇文章.pt文件转成.tflite文件的原理:是将.pt文件转换成一种中间表示形式.onnx后再转换成.tflite格式,具体流程是:.pt => .onnx => .pb => .tflite建议:能直接训练出来.tflite还是用tensorflow训练。

2025-06-13 09:31:10 790 2

原创 MediaPipe如何训练自己的手势数据

前言:由于Google上面提供的默认模型只包含7种手势,如何自定义自己的模型,虽然官网给了示例,但是是基于Google的平台Colab运行的,这个需要传文件到Google云盘,然后也比较麻烦,那么如何在本地运行,折腾了挺久,网上太多无效的文章,所以在这里分享。2、查看模型接收的格式,可以运行官网示例,下载官网示例数据集进行查看。整理好自己的数据集,修改数据集路径即可,hagrid-sample-30k-384p 数据集是hagrid的精简版,包含18种手势和无手势,可在我的资源里面进行下载。

2025-06-12 16:58:19 507

原创 安装mediapipe-model-maker报错解决

尝试过各种方法,一直没有解决,后面使用Windows环境下的wsl解决,因为是Linux内核,Python 环境采用 3.10,因为这个依赖 Tensorflow,Tensorflow不支持太高版本的 Python。在Windows下执行。

2025-06-12 16:17:12 287

原创 YOLO训练保持原有识别能力

YOLOv8训练新数据集时会出现灾难性遗忘问题,导致模型丢失原有识别能力。本文提供了三种解决方案:1)联合训练新旧数据集;2)迁移学习冻结部分网络层;3)模型集成分别推理。关键措施包括合并数据集、降低学习率、使用余弦退火和学习率衰减等。最佳实践建议保留部分旧数据样本,确保标注格式统一,并延长训练周期。验证时需同时评估新旧类别性能,注意监控各类别AP变化。对于新旧任务差异过大的情况,建议训练两个独立模型。

2025-06-06 16:26:43 501

原创 LOOI机器人的技术实现解析:从手势识别到边缘检测

LOOI机器人创新性地融合智能手机与专用硬件,通过多模态技术实现情感化交互。其核心技术架构采用分层设计:硬件层提供传感器支持,手机层负责计算,软件层整合传统算法与大模型。手势识别结合MediaPipe关键点检测与红外传感器,物体识别采用YOLOv5等轻量模型与大模型语义理解互补,边缘检测依靠多传感器融合确保安全移动。这种混合架构平衡了性能与功耗,传统算法处理实时任务,大模型负责复杂认知,既保障隐私又实现自然交互,展现了AI硬件领域的前沿设计思路。

2025-06-06 10:06:54 1042

原创 ML Kit与YOLO:移动AI与实时检测终极对决

ML Kit和YOLO是两种不同的技术方案,虽然都涉及计算机视觉和目标检测,但它们在设计目标、技术实现和应用场景上有显著差异。总之,ML Kit是“低代码工具”,而YOLO是“可编程框架”,根据项目需求选择或组合即可。

2025-06-05 14:34:41 345

原创 Jupyter Notebook 是否需要与环境绑定

Jupyter Notebook 是否与环境绑定以及是否需要每个环境都安装,取决于你的使用需求。启动 Jupyter 后,可以在界面中选择不同的内核(Kernel)切换环境。这样启动的 Jupyter 会默认使用当前环境的 Python。后,Jupyter 会自动检测所有已安装。此后新建的 Conda 环境只需安装。,即可在 Jupyter 中直接使用。安装 Jupyter,然后通过。

2025-05-29 16:18:32 455

原创 LLM长期记忆和上下文对话的区别

(如GPT-4的32k tokens),仅能处理当前会话内的信息。通过外部系统(如数据库、向量存储)实现跨会话、跨任务的信息持久化存储。LLM长期记忆和上下文对话是AI系统中两种不同的记忆机制,它们在功能、技术实现和应用场景上存在显著差异。例如,AI助手可先用上下文窗口处理当前对话,同时调用Memobase检索用户历史偏好生成个性化回复。:结构化、可扩展的“外部记忆库”,需结合检索增强生成(RAG)等技术调用。:短时、临时的“工作记忆”,受限于窗口大小和注意力衰减效应。

2025-05-26 11:41:04 418

原创 Dify长期记忆插件: Mem0 与 Memobase

前言:如何在Dify上面快速实现长期记忆(不了解长期记忆的可以查看文章)。技术选型在开发实现中占据重要地位,Dify目前提供了众多插件,我们来对比热门的 mem0 和 memobase。在技术架构、应用场景和功能特性上存在显著差异。需要快速集成动态记忆、实时性要求高(如聊天机器人)、开发资源有限的中小型项目。,通过实时更新和衰减机制保持记忆的新鲜度;需长期用户画像分析、高并发处理(如教育平台)、隐私敏感的企业级应用。作为 Dify 平台中两种主流的记忆组件,,通过结构化存储实现长期记忆的精准调用。

2025-05-26 11:38:37 1455

原创 CentOSStream9安装Miniconda,亲测!

选择安装路径(默认 ~/miniconda3),或自定义路径(如 /opt/miniconda3)。询问是否初始化 Conda 时,输入 yes(会自动添加环境变量)。确保服务器有 sudo 权限 或直接以 root 用户 操作。如果安装到系统目录(如 /opt),需确保有写入权限。按 Enter 阅读许可协议,输入 yes 同意。有任何疑问可留言或私聊!

2025-05-24 13:55:18 356

原创 Linux通过Git方式安装Dify(手把手教学)

输入命令,然后下面输入y确定。安装成功后输入验证。

2025-05-23 16:57:16 935 1

原创 AI玩具方案

• 优势:海外云服务商提供多语种支持(如英语、西班牙语、法语等),且具备成熟的噪声处理、远场识别能力,无需自研声学模型。• 自建场景:若需定制IP角色声音(如玩具专属语音),可部署开源模型Tortoise-TTS(需NVIDIA显卡)。• 自建高频语种TTS模型(Tortoise-TTS),租用GPU服务器部署轻量级大模型(如Phi-3)。• 低频长尾需求(如小语种/方言):通过自建模型+缓存(如Redis)降低API调用频次。• 推荐方案:混合部署(核心语种用API,小众语种自建)

2025-05-10 11:02:10 1012

原创 Conda激活环境无效

首先手动加载 Conda 配置​​(注意在管理员的cmd窗口或者powershell窗口)如果执行报错如下:. “C:\software\anaconda3\shell\condabin\conda-hook.ps1” . : 无法加载文件C:\software\anaconda3\shell\condabin\conda-hook.ps1,因为在此系统上禁止运行脚本那么按下面流程解决。

2025-05-09 11:54:42 320

原创 Windows下Dify连接Ollama无效

• 版本检查:确认Dify和Ollama均为最新版本,避免已知兼容性问题。• 若Dify通过Docker部署,需使用宿主机IP(如。• 模型名称匹配:确保Dify中填写的模型名称(如。• 检查Docker容器是否在同一网络,或通过。• 模型兼容性:部分模型可能需要额外参数(如。),需参考Ollama文档调整Dify配置。)与Ollama已下载的模型完全一致。• 验证模型是否下载成功(如。若未下载模型,需先执行。需要管理员打开cmd。

2025-05-09 09:55:33 1162

原创 Dify工作流接收API请求带文件(有小坑)

在上面这样一个工作流中,开始节点需要接收一个音频文件,那么如何构建请求。首先看一下官方给的示例,这里注意如果采用 local_file 模式,需要先调用上传文件接口,然后拿到文件id。实际请求如下,file 需要放到 inputs 里面。如果还有其他疑问,欢迎留言探讨!

2025-05-08 17:24:03 1766 13

原创 在线dify访问本地ollama报错

• 安全警告:暴露公网端口需启用TLS加密,可参考Ollama官方文档配置HTTPS。• 替代方案:若企业有云服务器,可在云端部署Ollama并通过VPC专线连接Dify。• 性能优化:若需长期使用,建议购买Cpolar付费套餐获得固定域名。• 任务栏右键Ollama图标 → 退出 → 重新启动Ollama。右键点击 此电脑 → 属性 → 高级系统设置 → 环境变量。• 基础URL:内网穿透地址或映射后的公网地址。→ 设置 → 模型供应商 → Ollama。• 外部端口:任意未占用端口(如。

2025-05-08 10:37:53 1685

原创 Python 常用Web框架对比

• 理由:内置Admin后台、权限系统,适合教育管理系统等需要快速开发的全栈项目。• "包含电池"设计,内置ORM、Admin后台、认证系统等20+组件。• 短板:性能相对较低(单请求响应约50ms),灵活性受限。• 200KB轻量内核,支持按需加载扩展(如数据库、表单)• 严格MVC架构规范,插件化开发支持(如DRF扩展)• 高性能选择:FastAPI(自动化文档+异步支持)• 案例:智能客服系统(推理延迟优化至300ms)• 备选方案:Sanic(金融级低延迟场景)

2025-04-22 16:25:19 565

原创 主流向量数据库核心技术对比与选型指南(2025年4月)

2025年向量数据库市场呈现三大趋势——多模态支持扩展至视频流处理、边缘端推理延迟突破50ms阈值、隐私计算与联邦学习深度整合。◦ 分布式架构支持十亿级向量规模,延迟低至毫秒级,适用于超大规模企业级场景。◦ 提供IVF_FLAT、HNSW等6种索引算法,灵活平衡精度与效率。◦ 全托管云服务支持分钟级部署,API调用成功率99.99%◦ 内置RBAC权限体系与数据加密功能,满足金融级安全需求。◦ 支持向量与标量数据联合检索,满足多条件过滤需求。◦ 支持动态数据更新与混合搜索,适配实时业务需求。

2025-04-15 17:15:29 747

原创 主流Embedding模型优劣势解析与技术选型指南(2025年4月)

◦ 长文本处理能力弱于BGE-M3(5000+ tokens文档召回率低28%)• BGE-M3支持4bit量化,显存占用可压缩至2.1GB(精度损失<5%)◦ 支持边缘计算部署(内存占用3.2GB,i9处理器45ms/token)◦ 多语言支持(194种语言)与长文本处理(8K tokens)能力双优。◦ 金融数据向量映射误差比BGE-M3低0.08(余弦相似度)◦ 中文语义捕捉能力弱于BGE-M3(测试低15-20%)◦ 显存占用高达6.8GB(FP16),需高端显卡支持。

2025-04-15 17:11:30 2243

原创 企业级大模型落地核心工具深度解析:Ollama、vLLM与LMDeploy技术对比

◦ PagedAttention技术:显存利用率提升3倍,支持10万token超长文本生成。测试环境:单卡A100-80G,Qwen2-7B/72B模型,输入512tokens。◦ 硬件友好:6GB显存GPU即可运行7B模型,M1/M2芯片优化出色。◦ 隐私保障:完全离线运行,内置1700+量化模型(int4为主)◦ 4bit量化:推理速度达FP16的2.4倍,显存占用减少60%◦ 极简部署:支持Windows/macOS/Linux全平台,:LMDeploy+昇腾910B实现国产化替代,成本降低40%

2025-04-15 15:17:15 1052

原创 Ollama模型显存管理机制解析与Flask部署方案对比

• PyTorch与CUDA版本不匹配会导致显存异常(推荐CUDA 12.1 + PyTorch 2.3)。• 部署7B模型时,启动后未调用时显存占用约6GB,调用后峰值占用8GB,闲置5分钟后降至6GB。• 示例:24GB显存服务器最多部署3个7B模型(3×6GB=18GB)。• 若服务器配置24GB显存,可同时保留3个7B模型权重以支持快速切换。• 启用Ollama分块加载机制,避免单次显存溢出。• 若同时运行多个模型,需预留20%显存冗余。:7B模型显存从8GB→4.8GB。Ollama部署模型后,

2025-04-14 23:04:10 1120

深度学习 人脸情绪 数据集

里面包括八种面部情绪(如生气、开心),包括训练集每个14张、测试集每个5张

2025-06-18

MediaPipe手势识别示例数据集

包含石头、剪刀、布、none四种类型,每种125个图片

2025-06-12

mysql-installer-community-8.0.42.0.msi

mysql-installer-community-8.0.42.0.msi镜像

2025-06-11

23种设计模式-黑马,设计模式概述

23种设计模式

2025-06-11

【多线程编程】基于Java的多线程技术详解:从基础概念到高级应用的设计与实现

内容概要:本文详细介绍了多线程编程的核心概念、创建方式、线程安全问题及其解决方案、线程通信机制以及JDK5.0引入的新特性。文章首先解释了程序、进程和线程的概念,接着介绍了线程调度机制和多线程的优势。文中讲解了两种创建线程的方式:继承Thread类和实现Runnable接口,并对比了两者的异同。对于线程安全问题,文章通过具体案例展示了如何使用同步机制(如synchronized关键字和Lock接口)来避免数据竞争。此外,文章还探讨了线程间的通信机制(如wait/notify)以及生产者-消费者模型。最后,介绍了JDK5.0新增的线程创建方式,包括实现Callable接口和使用线程池。 适合人群:具备一定编程基础,特别是Java编程经验的研发人员,尤其是对多线程编程感兴趣的开发者。 使用场景及目标:①理解多线程编程的基本概念,如程序、进程与线程的区别;②掌握创建和启动线程的方法;③学会识别和解决线程安全问题;④了解线程间通信机制及其应用场景;⑤熟悉JDK5.0新增的线程创建方式,如线程池的使用。 其他说明:本文不仅提供了理论知识,还结合了大量代码示例,帮助读者更好地理解和实践多线程编程。建议读者在阅读过程中动手实践代码示例,以加深理解。同时,对于复杂的线程安全问题和线程通信机制,建议结合实际项目进行深入研究。

2025-06-11

【Java技术演进】JDK8-17新特性详解:语法优化、API更新与GC改进助力高效开发从JDK8(下)

内容概要:本文详细介绍了JDK8-17期间Java语言及其API的主要新特性。其中包括交互式编程环境jShell的引入,简化异常处理的改进,局部变量类型推断、instanceof模式匹配、switch表达式的增强等语法特性,以及文本块、Record、密封类等新特性。API层面,文章探讨了Optional类的改进,String类内部存储结构的变化及新方法的添加,Applet API的移除,以及GC机制(如G1、Shenandoah、ZGC)的演进。这些特性共同推动了Java语言的发展,提高了开发效率和代码质量。 适合人群:具备一定Java编程经验的研发人员,特别是关注Java语言发展和技术演进的技术爱好者和从业者。 使用场景及目标:①理解并掌握JDK8-17期间Java语言的核心语法变化,如局部变量类型推断、switch表达式的增强等;②熟悉API层面的改进,如Optional类的优化、String类的更新;③深入学习新的垃圾回收机制,提升大型应用的性能表现;④探索Record、密封类等新特性的应用场景,优化代码设计。 其他说明:文章不仅提供了详细的理论讲解,还结合了丰富的代码示例,便于读者理解和实践。此外,文章还提及了Java语言在未来计算模式下的发展方向,强调了Java在面对云计算、AI等新技术浪潮时的适应性和改进空间。

2025-06-11

【Java技术领域】JDK 8-17新特性详解:版本迭代、关键特性和应用实践(上)

内容概要:本文详细介绍了从Java 8到Java 17的版本迭代及新特性,重点讲解了Java 8的重要更新,包括Lambda表达式、函数式接口、方法引用与构造器引用、Stream API等内容。文章首先概述了Java版本的发布特点,特别是从Java 9开始的每半年一次更新和长期支持版本(LTS)的发布策略。接着深入探讨了Java 8引入的Lambda表达式,通过多个示例展示了其语法格式和应用场景。随后介绍了函数式接口的概念及其与Lambda表达式的关联,列举了常见的内置函数式接口。此外,还详细解释了方法引用和构造器引用的使用方法,以及Stream API的强大功能和操作流程。最后简要提及了Java 9及以后版本的一些新特性。 适合人群:具备一定Java编程基础的研发人员,尤其是对Java新特性感兴趣的开发者。 使用场景及目标:①理解Java版本迭代的历史和发布策略;②掌握Java 8的核心新特性,如Lambda表达式、Stream API等;③学习如何使用函数式接口、方法引用和构造器引用简化代码;④熟悉Stream API的基本操作和应用场景。 阅读建议:本文内容详尽,涵盖了多个Java新特性,建议读者先理解Java 8的主要更新,再逐步学习后续版本的新特性。在学习过程中,结合代码示例进行实践,有助于更好地掌握相关知识点。

2025-06-11

【Java编程技术】深入解析Java反射机制及其应用:类加载、API操作与动态性实现

内容概要:本文详细介绍了Java反射机制的概念、原理、API使用方法及其应用场景。首先解释了反射的背景和意义,指出反射允许程序在运行期间获取类的内部信息并操作其属性和方法。接着阐述了反射的主要功能,包括获取类的结构信息、构造类实例、调用方法、处理注解等。文中还深入探讨了类加载过程、ClassLoader的工作机制及其分类,强调了不同类加载器的作用和层级关系。最后,通过具体的应用案例展示了反射在创建对象、调用方法、读取注解等方面的使用方法,特别提到了反射的动态性和灵活性,但也指出了其性能较低和可读性差的缺点。 适用人群:具备一定Java编程基础,尤其是对面向对象编程有一定理解的研发人员,特别是那些希望深入了解Java底层机制和框架设计原理的开发者。 使用场景及目标:①动态创建类的实例并调用其方法;②读取和处理类的注解信息;③在框架开发中实现灵活的类加载和模块隔离;④理解类加载器的工作原理,优化类加载性能;⑤通过反射机制提升代码的灵活性和扩展性。 其他说明:反射虽然强大,但在实际项目中应谨慎使用,因为它可能会降低程序的性能和可读性。建议在框架开发和工具类库中合理运用反射,以增强系统的灵活性和可维护性。此外,由于反射绕过了编译期检查,可能导致运行时错误,因此在使用时应注意安全性。

2025-06-11

Java面试黑马2024

Java面试黑马2024

2025-06-11

DeepSeek赋能职场-进阶(清华).zip

DeepSeek赋能职场-进阶(清华)

2025-06-11

DeepSeek:从入门到精通(清华).zip

DeepSeek:从入门到精通(清华)

2025-06-11

大模型术语表:涵盖AI对话、图像、视频等多领域代表性产品及关键技术概念解析

内容概要:本文档《大模型术语表.pdf》详细介绍了大模型及相关领域的关键术语和技术概念。文档首先列举了各类代表性产品,如ChatGPT、Midjourney等,涵盖AI对话、图像、视频、编程等多个领域。随后,文档深入解释了大模型的核心组件和技术,包括但不限于参数、权重、模型、大模型(LLM)、推理、AGI、AIGC等。此外,文档还探讨了模型的训练与优化方法,如预训练、微调、模型压缩等,并介绍了RAG(检索增强生成)技术及其应用。最后,文档阐述了智能代理(Agent)、多模态模型、工作流等高级概念,以及它们在实际应用中的作用。 适合人群:对大模型及相关技术感兴趣的初学者、研究人员、开发人员以及希望深入了解AI技术的企业决策者。 使用场景及目标:①帮助读者理解大模型的基本概念和技术细节;②为开发人员提供技术选型和应用开发的指导;③为企业决策者提供战略规划和技术创新的参考;④为研究人员提供前沿技术和未来发展方向的指引。 其他说明:本文档不仅涵盖了大模型的基础知识,还深入探讨了其应用场景和技术实现,为读者提供了全面的学习和参考资料。建议读者在学习过程中结合具体案例和技术文档进行实践,以加深对大模型的理解和应用能力。

2025-06-11

hagrid轻量数据集带标签.txt,yolo可直接运行

和之前上传的hagrid-sample-30K-384p相同,进行了格式处理,标签为.txt,yolo可直接运行

2025-06-11

软考PPT-某知名机构

2024年

2025-06-11

狗图片数据集+标签.xml

训练集112张图片和验证集27张图片,可直接训练

2025-06-11

VSCode1.85.2版本

在某些低版本服务器上,无法使用高版本的VSCode进行Remote远程连接,需要低版本VSCode

2025-06-11

图像检测-头盔数据集-yolo可直接训练

里面包含训练集2605、测试集82、验证集114

2025-06-11

图像检测-hagrid训练数据集带标注

hagrid官方数据集上百G,过于庞大,这个数据集包含30000多张图片和标注的.json文件,18种手势类型,可直接训练

2025-06-10

Java开发手册(黄山版)

Java开发手册(黄山版)当前最新

2024-01-23

libaio-0.3.107-10.el6.x86_64.rpm

解决MySQL安装中缺少libaio依赖问题

2022-10-09

jsp+servlet员工管理系统.zip

Java毕业设计员工管理系统

2022-01-04

eq_data_30_day_m1.json

30天全球地震数据集

2021-03-16

sitka_weather_2018_simple.csv

某地区2018年简易气温数据集

2021-03-16

长理复试真题及答案.zip

长沙理工大学研究生从2012年至2020年的复试真题及答案,整理的非常详细,相比于在某些学长那里买的资料,我这个已经是将答案改了并做了对比的答案。

2020-05-24

C语言试题库2.docx

针对应对C语言考试的同学和对C语言编程感兴趣的同学

2021-04-10

Delphi课程设计.zip

以前大二学的Delphi,然后做了一个餐饮管理系统,数据库用的是SQL server,里面的东西我都忘记了,刚好电脑里有就上传了,免费下载,希望对在看的您有帮助。

2021-03-04

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除