- 博客(222)
- 资源 (6)
- 收藏
- 关注

原创 AI 大模型应用学习路线-2025,学完高薪不是梦
核心概念:RAG(检索增强生成)解决的实际问题与优势。工作原理:从检索到生成的完整流程解析。
2025-06-13 21:44:04
1056

原创 最全大模型术语表,从入门到入土,从此告别小白!
预定义模型是由 AI 厂商训练并提供的现成模型,用户可以直接调用而无需自行训练。这些闭源模型(如 GPT-4、Claude 等)通常经过大规模训练和优化,能力强大且易于使用,适合快速开发应用或缺乏自主训练资源的团队。
2025-06-10 22:30:26
1282
原创 金融知识:投资和融资
投资是为了回报:回报主要来自企业成长带来的股权增值。高风险高收益:投资早期企业可能血本无归,但也可能获得巨大回报。专业机构靠投资组合来管理风险。估值是核心:融资过程就是不断对公司进行“估值”的过程。估值升高,早期投资者的股份就更值钱。股权稀释:虽然不断融资会让老股东的持股比例下降,但只要公司价值增长得更快,他们手中股份的实际价值就是在飞速上升。上市是重要里程碑:上市(IPO)是企业发展中的一个阶段,意味着公司可以面向公众募集资金,同时也为早期投资人提供了一个重要的退出渠道。
2025-09-10 18:31:22
562
原创 机器学习、深度学习与大模型:技术选型的思考与实战指南
技术选型不是追求潮流,而是基于实际需求的理性决策。机器学习作为基础工具仍然具有强大生命力,深度学习在特定领域保持技术优势,大模型则开启了通用人工智能的新可能。理解每种技术的适用边界,才能在实际项目中做出最优选择。在实际开发中,建议开发者保持技术敏感度但避免盲目跟风。最好的技术方案永远是那个最适合具体业务场景、最能解决实际问题的方案。
2025-09-09 10:36:01
858
原创 OCR与多模态大模型:从“看见”文字到“读懂”世界的技术革命
未来,随着多模态大模型能力的持续提升,它可能会内置更强大的OCR能力。但在可预见的未来,在特定、高效的工业化场景中,专精的OCR技术依然不可或缺。:在AI处理图文信息的道路上,OCR(光学字符识别)和多模态大模型代表了两个不同的时代。最后,我们将揭示一个更强大的趋势:二者如何强强联合,重塑信息处理的未来。这种模式结合了OCR的“火眼金睛”和大模型的“最强大脑”,实现了1+1>2的效果。OCR和多模态大模型是AI技术演进的不同阶段,它们不是取代关系,而是互补与增强。的图片时,传统OCR容易失效。
2025-09-05 09:59:07
492
原创 学习大模型,还有必要学习机器学习,深度学习和数学吗
这是一个非常好的问题,也是很多初学者会有的困惑。可以把你的问题想象成:“现在有了先进的汽车制造厂,还有必要学习发动机原理、机械设计和材料科学吗?大模型(如GPT、LLaMA、Qwen等)是建立在和这些基础之上的最高层应用。它们是这些基础学科的集大成者。
2025-08-30 10:05:47
1636
4
原创 模型微调与RAG在问答系统中的对比分析
优势领域深度适配,专业性强推理速度快,适合实时系统不依赖外部系统,部署简单局限知识更新成本高,周期长需要大量标注数据和计算资源存在过拟合风险,特别是数据不足时。
2025-08-09 16:40:41
673
原创 提示词与微调对模型自我认知和对话风格的影响对比
在大型语言模型的应用中,塑造模型的自我认知和对话风格有两种主要方法:通过提示词直接指定,或通过微调数据间接改变。这两种方式在实现机制、效果持久性和适用范围上存在显著差异。以下将从多个维度对这两种方法进行详细对比分析。
2025-08-09 16:34:45
709
原创 人脸识别技术与开源项目全面指南
人脸识别技术已经发展到一个相当成熟的阶段,ArcFace、FaceNet、InsightFace等模型在各种基准测试中都已达到接近人类水平的准确度。开源社区也提供了从研究到商用的完整解决方案,如InsightFace、face_recognition、CompreFace等。对于大多数应用场景,建议优先考虑现成的开源项目或云服务,而不是从零开始训练模型。具体选择应基于精度需求、硬件条件、开发资源和合规要求等多方面因素综合考虑。
2025-08-02 14:43:50
1015
原创 流式输出阻塞原因及解决办法
在FastAPI中实现Server-Sent Events (SSE)流式响应时,经常遇到响应数据不是实时发送给客户端,而是累积到一定程度后一次性发送的问题。Nginx 作为反向代理时,流式输出出现问题是很常见的问题。通过在每次yield后添加await asyncio.sleep(0),强制中断当前协程的连续执行。await asyncio.sleep(0)会让当前协程暂停执行,并将控制权交还给事件循环。事件循环会处理其他待处理的任务,包括将已生成的数据发送给客户端。
2025-08-01 16:00:25
490
原创 流式输出:概念、技巧与常见问题
流式输出(Streaming Output)是一种数据处理和传输方式,数据在生成的同时被逐步发送或处理,而不是等待全部数据准备好后再一次性输出。实时视频/音频流(如直播)大文件传输实时日志处理聊天应用机器学习模型逐步推理。
2025-08-01 15:58:54
532
原创 LangChain和LangGraph 里面的 `create_react_agent`有什么不同
虽然两者都实现了 ReAct 代理模式,但 LangGraph 的版本提供了更强大的工作流控制能力,适合构建复杂的多步骤代理系统。如果你只需要基本的代理功能,LangChain 的版本可能更简单直接。
2025-07-29 15:20:32
595
原创 输入Token和输出Token对首Token延迟的影响
输入Token长度通过增加计算和内存负担直接影响TTFT,而输出长度主要通过后续生成阶段间接影响。优化需结合模型规模、硬件、批处理策略及缓存技术,针对具体场景(如流式对话或批量处理)权衡指标。
2025-07-25 11:26:36
515
原创 MCP消息协议和传输协议(Java角度)
作为Java程序员,你可以将和的关系类比为。以下是具体解析:tool_callparametersNetty。
2025-07-22 22:25:16
903
原创 以Java程序员角度理解MCP
MCP ≈ AI版的Dubbo:标准化模型与工具的交互协议,解决异构系统集成问题。对Java程序员的价值可用熟悉的RPC思维理解AI集成(JSON-RPC替代HTTP API)。通过Java SDK快速开发MCP服务/客户端,复用现有微服务技能。一句话:MCP让大模型像调用本地方法一样安全操作数据库、API等资源,而Java开发者是这套体系的“基础设施搭建者”。
2025-07-22 22:13:05
931
原创 从Java到大模型应用:10天拿下5个Offer,我的转型逆袭之路
Java开发仍然有市场,但AI大模型才是未来。如果你还在犹豫,不妨想想:3年后,Java CRUD开发是否会被AI取代?5年后,你的薪资还能涨吗?风口来了,不把握就没了!现在正是入局AI大模型的黄金期,与其在红海市场挣扎,不如主动拥抱新技术,实现职业跃迁!PS:如果你对转型AI大模型感兴趣,可以关注我的CSDN博客,后续会分享更多实战经验和学习资料!准备做一个免费入门教程,但是要看我精力够不够。(不是卖课的)欢迎在评论区讨论,留下你的看法!
2025-07-19 10:08:42
382
原创 CMD,PowerShell、Linux/MAC设置环境变量
(Windows/Linux):需要管理员权限。:仅在当前终端窗口有效,关闭后失效。:写入配置文件或注册表,长期有效。:适用于测试,关闭终端后失效。
2025-07-10 11:48:47
568
原创 Transformer、BERT、GPT以及Embedding之间的关系
"BERT分类模型"和"GPT生成模型"是正确的,但Embedding不是独立的一类,而是这些模型的中间产物。独立存在的"Embedding模型"(如OpenAI的text-embedding-ada-002)通常是。Transformer分为两大类应用,但划分标准不是"分类vs生成",而是。(类似BERT)训练的,专门用于生成高质量的文本向量表示。Embedding(嵌入)是。
2025-07-09 09:08:51
583
原创 Safetensors与大模型文件格式全面解析
Safetensors是一种专为存储大型张量数据设计的文件格式,由HuggingFace团队开发,旨在提供安全高效的模型参数存储解决方案。下面我将详细介绍Safetensors格式及其特点,并全面梳理当前主流的大模型文件格式。
2025-07-08 17:18:44
959
原创 Nginx安装
由于nginx是基于c语言开发的,所以需要安装c语言的编译环境,及正则表达式库等第三方依赖库,如在。下载地址:https://nginx.org/en/download.html。上可以如下执行依赖安装,其他系统切换对应的安装方式进行依赖安装。可以选择稳定版本,或者按照自己需求下载对应版本。默认端口是80,如果冲突,可在配置文件中修改。运行下面两条命令,默认安装到。
2025-07-07 18:46:07
360
原创 ML Kit 介绍
定位:ML Kit是一个移动端SDK,将Google的机器学习技术封装为可离线运行的解决方案,支持实时处理摄像头输入等场景。关键优势离线运行:所有处理在设备端完成,保障数据隐私并支持无网络环境使用。跨平台:兼容Android和iOS,提供统一的API接口。易用性:通过高级API简化开发,例如几行代码即可实现文本识别或人脸检测。
2025-07-06 10:29:45
485
原创 PyTorch里.pt和.pth的区别
本质差异.pt是“完整存档”,.pth是“参数快照”。实践建议:优先使用.pt确保兼容性,仅在参数共享时用.pth。
2025-06-30 14:21:30
968
原创 YOLOv8快速入门
YOLOv8 在训练中使用了COCO数据集数据集地址,包含超过20万张图像,涵盖80类常见物体(如人、车辆、动物、日常用品等),支持目标检测、实例分割等任务。下面以头盔数据集为例数据集下载地址。
2025-06-27 11:26:39
490
原创 PostgreSQL与MySQL深度对比:为何Dify选择PostgreSQL作为核心数据库
PostgreSQL和MySQL都是优秀的开源数据库,但设计哲学和适用场景存在明显差异。Dify选择PostgreSQL作为默认数据库,充分考虑了其在数据一致性、复杂查询能力、扩展性以及与向量数据库协同工作等方面的综合优势。随着应用系统越来越复杂,对数据处理的要求也越来越高,PostgreSQL在"严格标准、丰富功能、可靠事务"方面的坚持,使其成为现代数据密集型应用的理想选择。而MySQL则继续在简单易用、高并发读取的传统Web应用领域保持其重要地位。
2025-06-20 11:05:43
1114
原创 Keras是什么
Keras作为高层API,与TensorFlow深度集成,而PyTorch则提供另一种灵活选择。对于大多数用户,直接使用TensorFlow内置的tf.keras是最佳实践,无需单独安装。若需独立版或特定后端支持,需注意版本兼容性。
2025-06-18 09:08:19
337
原创 Dify与LangChain:可视化平台与代码框架的共存价值
在当今大模型应用开发领域,Dify和LangChain代表了两种不同的开发范式。Dify作为可视化低代码平台,确实大幅降低了AI应用开发门槛,但LangChain作为代码框架仍然有其不可替代的价值。
2025-06-16 16:39:06
721
原创 世界模型——真正能“颠覆世界”的AI革命
世界模型是指一个智能系统(无论是生物大脑还是人工系统)为了理解和预测其环境而构建的内部表示或认知框架。简单来说,它是系统对"世界如何运作"的理解和假设的集合。在人类认知中,世界模型相当于我们大脑中对物理规律、社会规范、因果关系等概念的内部表征。而在人工智能中,世界模型则是算法对环境动态、实体关系和行为后果的数学表达。世界模型:旨在模拟现实世界的物理规律、因果关系和动态变化,构建对环境的内部表征,使AI能够像人类一样通过“想象”预演行动后果,实现反事实推理(即回答“如果采取不同行动会如何”的问题)。
2025-06-15 11:51:43
1394
原创 如何编写高效的Prompt:从入门到精通
Prompt是与AI模型交互时输入的指令或问题,它告诉AI你希望它做什么。可以把Prompt想象成给AI下达的任务书——任务书越清晰明确,AI完成得就越好。编写高效的Prompt是一项可以通过练习不断提升的技能。记住,好的Prompt就像好的问题一样,已经包含了答案的种子。通过本文介绍的原则和技巧,你现在已经具备了编写专业级Prompt的基础知识。实践是提高的关键,所以不妨现在就尝试为你的下一个AI交互设计一个精心构思的Prompt吧!
2025-06-14 22:30:48
1168
原创 DeepSeek介绍
DeepSeek是一家主攻大模型研发与应用的中国AGI科技公司,其开源推理模型DeepSeek-R1凭借强化学习技术,在数学、代码、自然语言推理等任务上性能比肩OpenAI o1正式版且可免费商用。它能为用户提供智能对话、文本生成、代码补全、文件读取等多场景应用,而从入门到精通的关键在于理解推理模型与通用模型的差异,掌握提示语设计策略,包括精准定义任务、分解复杂问题、合理运用指令驱动与需求导向等方法,同时规避幻觉生成、过度指令等常见陷阱,以实现高效的人机协作。公司与模型简介。
2025-06-14 16:17:57
969
原创 TensorFlow 与 PyTorch区别
PyTorch 在学术界和开源社区的主导地位日益增强(如 Hugging Face 的 NLP 模型库),而 TensorFlow 在工业界(尤其是 Google 生态)仍占优势。两者均在向“动态图 + 静态图编译”融合的方向发展(如 PyTorch 2.0 的。和 TensorFlow 的 Eager Execution)。
2025-06-13 09:31:44
1201
1
原创 pt模型转tflite格式的血与泪
用yolov8n训练完手势数据后,需要用到安卓移动端,所以需要转为tflite格式,不清楚各种格式的可以看我另一篇文章.pt文件转成.tflite文件的原理:是将.pt文件转换成一种中间表示形式.onnx后再转换成.tflite格式,具体流程是:.pt => .onnx => .pb => .tflite建议:能直接训练出来.tflite还是用tensorflow训练。
2025-06-13 09:31:10
951
2
原创 MediaPipe如何训练自己的手势数据
前言:由于Google上面提供的默认模型只包含7种手势,如何自定义自己的模型,虽然官网给了示例,但是是基于Google的平台Colab运行的,这个需要传文件到Google云盘,然后也比较麻烦,那么如何在本地运行,折腾了挺久,网上太多无效的文章,所以在这里分享。2、查看模型接收的格式,可以运行官网示例,下载官网示例数据集进行查看。整理好自己的数据集,修改数据集路径即可,hagrid-sample-30k-384p 数据集是hagrid的精简版,包含18种手势和无手势,可在我的资源里面进行下载。
2025-06-12 16:58:19
702
原创 安装mediapipe-model-maker报错解决
尝试过各种方法,一直没有解决,后面使用Windows环境下的wsl解决,因为是Linux内核,Python 环境采用 3.10,因为这个依赖 Tensorflow,Tensorflow不支持太高版本的 Python。在Windows下执行。
2025-06-12 16:17:12
495
2
原创 YOLO训练保持原有识别能力
YOLOv8训练新数据集时会出现灾难性遗忘问题,导致模型丢失原有识别能力。本文提供了三种解决方案:1)联合训练新旧数据集;2)迁移学习冻结部分网络层;3)模型集成分别推理。关键措施包括合并数据集、降低学习率、使用余弦退火和学习率衰减等。最佳实践建议保留部分旧数据样本,确保标注格式统一,并延长训练周期。验证时需同时评估新旧类别性能,注意监控各类别AP变化。对于新旧任务差异过大的情况,建议训练两个独立模型。
2025-06-06 16:26:43
716
原创 LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人创新性地融合智能手机与专用硬件,通过多模态技术实现情感化交互。其核心技术架构采用分层设计:硬件层提供传感器支持,手机层负责计算,软件层整合传统算法与大模型。手势识别结合MediaPipe关键点检测与红外传感器,物体识别采用YOLOv5等轻量模型与大模型语义理解互补,边缘检测依靠多传感器融合确保安全移动。这种混合架构平衡了性能与功耗,传统算法处理实时任务,大模型负责复杂认知,既保障隐私又实现自然交互,展现了AI硬件领域的前沿设计思路。
2025-06-06 10:06:54
1465
原创 ML Kit与YOLO:移动AI与实时检测终极对决
ML Kit和YOLO是两种不同的技术方案,虽然都涉及计算机视觉和目标检测,但它们在设计目标、技术实现和应用场景上有显著差异。总之,ML Kit是“低代码工具”,而YOLO是“可编程框架”,根据项目需求选择或组合即可。
2025-06-05 14:34:41
408
原创 Jupyter Notebook 是否需要与环境绑定
Jupyter Notebook 是否与环境绑定以及是否需要每个环境都安装,取决于你的使用需求。启动 Jupyter 后,可以在界面中选择不同的内核(Kernel)切换环境。这样启动的 Jupyter 会默认使用当前环境的 Python。后,Jupyter 会自动检测所有已安装。此后新建的 Conda 环境只需安装。,即可在 Jupyter 中直接使用。安装 Jupyter,然后通过。
2025-05-29 16:18:32
497
原创 LLM长期记忆和上下文对话的区别
(如GPT-4的32k tokens),仅能处理当前会话内的信息。通过外部系统(如数据库、向量存储)实现跨会话、跨任务的信息持久化存储。LLM长期记忆和上下文对话是AI系统中两种不同的记忆机制,它们在功能、技术实现和应用场景上存在显著差异。例如,AI助手可先用上下文窗口处理当前对话,同时调用Memobase检索用户历史偏好生成个性化回复。:结构化、可扩展的“外部记忆库”,需结合检索增强生成(RAG)等技术调用。:短时、临时的“工作记忆”,受限于窗口大小和注意力衰减效应。
2025-05-26 11:41:04
523
【多线程编程】基于Java的多线程技术详解:从基础概念到高级应用的设计与实现
2025-06-11
【Java技术演进】JDK8-17新特性详解:语法优化、API更新与GC改进助力高效开发从JDK8(下)
2025-06-11
【Java技术领域】JDK 8-17新特性详解:版本迭代、关键特性和应用实践(上)
2025-06-11
【Java编程技术】深入解析Java反射机制及其应用:类加载、API操作与动态性实现
2025-06-11
大模型术语表:涵盖AI对话、图像、视频等多领域代表性产品及关键技术概念解析
2025-06-11
Delphi课程设计.zip
2021-03-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人