- 博客(209)
- 资源 (6)
- 收藏
- 关注

原创 AI 大模型应用学习路线-2025,学完高薪不是梦
核心概念:RAG(检索增强生成)解决的实际问题与优势。工作原理:从检索到生成的完整流程解析。
2025-06-13 21:44:04
1001

原创 最全大模型术语表,从入门到入土,从此告别小白!
预定义模型是由 AI 厂商训练并提供的现成模型,用户可以直接调用而无需自行训练。这些闭源模型(如 GPT-4、Claude 等)通常经过大规模训练和优化,能力强大且易于使用,适合快速开发应用或缺乏自主训练资源的团队。
2025-06-10 22:30:26
1201
原创 MCP消息协议和传输协议(Java角度)
作为Java程序员,你可以将和的关系类比为。以下是具体解析:tool_callparametersNetty。
2025-07-22 22:25:16
589
原创 以Java程序员角度理解MCP
MCP ≈ AI版的Dubbo:标准化模型与工具的交互协议,解决异构系统集成问题。对Java程序员的价值可用熟悉的RPC思维理解AI集成(JSON-RPC替代HTTP API)。通过Java SDK快速开发MCP服务/客户端,复用现有微服务技能。一句话:MCP让大模型像调用本地方法一样安全操作数据库、API等资源,而Java开发者是这套体系的“基础设施搭建者”。
2025-07-22 22:13:05
455
原创 从Java到大模型应用:10天拿下5个Offer,我的转型逆袭之路
Java开发仍然有市场,但AI大模型才是未来。如果你还在犹豫,不妨想想:3年后,Java CRUD开发是否会被AI取代?5年后,你的薪资还能涨吗?风口来了,不把握就没了!现在正是入局AI大模型的黄金期,与其在红海市场挣扎,不如主动拥抱新技术,实现职业跃迁!PS:如果你对转型AI大模型感兴趣,可以关注我的CSDN博客,后续会分享更多实战经验和学习资料!准备做一个免费入门教程,但是要看我精力够不够。(不是卖课的)欢迎在评论区讨论,留下你的看法!
2025-07-19 10:08:42
271
原创 CMD,PowerShell、Linux/MAC设置环境变量
(Windows/Linux):需要管理员权限。:仅在当前终端窗口有效,关闭后失效。:写入配置文件或注册表,长期有效。:适用于测试,关闭终端后失效。
2025-07-10 11:48:47
450
原创 Transformer、BERT、GPT以及Embedding之间的关系
"BERT分类模型"和"GPT生成模型"是正确的,但Embedding不是独立的一类,而是这些模型的中间产物。独立存在的"Embedding模型"(如OpenAI的text-embedding-ada-002)通常是。Transformer分为两大类应用,但划分标准不是"分类vs生成",而是。(类似BERT)训练的,专门用于生成高质量的文本向量表示。Embedding(嵌入)是。
2025-07-09 09:08:51
519
原创 Safetensors与大模型文件格式全面解析
Safetensors是一种专为存储大型张量数据设计的文件格式,由HuggingFace团队开发,旨在提供安全高效的模型参数存储解决方案。下面我将详细介绍Safetensors格式及其特点,并全面梳理当前主流的大模型文件格式。
2025-07-08 17:18:44
578
原创 Nginx安装
由于nginx是基于c语言开发的,所以需要安装c语言的编译环境,及正则表达式库等第三方依赖库,如在。下载地址:https://nginx.org/en/download.html。上可以如下执行依赖安装,其他系统切换对应的安装方式进行依赖安装。可以选择稳定版本,或者按照自己需求下载对应版本。默认端口是80,如果冲突,可在配置文件中修改。运行下面两条命令,默认安装到。
2025-07-07 18:46:07
330
原创 ML Kit 介绍
定位:ML Kit是一个移动端SDK,将Google的机器学习技术封装为可离线运行的解决方案,支持实时处理摄像头输入等场景。关键优势离线运行:所有处理在设备端完成,保障数据隐私并支持无网络环境使用。跨平台:兼容Android和iOS,提供统一的API接口。易用性:通过高级API简化开发,例如几行代码即可实现文本识别或人脸检测。
2025-07-06 10:29:45
289
原创 PyTorch里.pt和.pth的区别
本质差异.pt是“完整存档”,.pth是“参数快照”。实践建议:优先使用.pt确保兼容性,仅在参数共享时用.pth。
2025-06-30 14:21:30
552
原创 YOLOv8快速入门
YOLOv8 在训练中使用了COCO数据集数据集地址,包含超过20万张图像,涵盖80类常见物体(如人、车辆、动物、日常用品等),支持目标检测、实例分割等任务。下面以头盔数据集为例数据集下载地址。
2025-06-27 11:26:39
437
原创 PostgreSQL与MySQL深度对比:为何Dify选择PostgreSQL作为核心数据库
PostgreSQL和MySQL都是优秀的开源数据库,但设计哲学和适用场景存在明显差异。Dify选择PostgreSQL作为默认数据库,充分考虑了其在数据一致性、复杂查询能力、扩展性以及与向量数据库协同工作等方面的综合优势。随着应用系统越来越复杂,对数据处理的要求也越来越高,PostgreSQL在"严格标准、丰富功能、可靠事务"方面的坚持,使其成为现代数据密集型应用的理想选择。而MySQL则继续在简单易用、高并发读取的传统Web应用领域保持其重要地位。
2025-06-20 11:05:43
995
原创 Keras是什么
Keras作为高层API,与TensorFlow深度集成,而PyTorch则提供另一种灵活选择。对于大多数用户,直接使用TensorFlow内置的tf.keras是最佳实践,无需单独安装。若需独立版或特定后端支持,需注意版本兼容性。
2025-06-18 09:08:19
287
原创 Dify与LangChain:可视化平台与代码框架的共存价值
在当今大模型应用开发领域,Dify和LangChain代表了两种不同的开发范式。Dify作为可视化低代码平台,确实大幅降低了AI应用开发门槛,但LangChain作为代码框架仍然有其不可替代的价值。
2025-06-16 16:39:06
569
原创 世界模型——真正能“颠覆世界”的AI革命
世界模型是指一个智能系统(无论是生物大脑还是人工系统)为了理解和预测其环境而构建的内部表示或认知框架。简单来说,它是系统对"世界如何运作"的理解和假设的集合。在人类认知中,世界模型相当于我们大脑中对物理规律、社会规范、因果关系等概念的内部表征。而在人工智能中,世界模型则是算法对环境动态、实体关系和行为后果的数学表达。世界模型:旨在模拟现实世界的物理规律、因果关系和动态变化,构建对环境的内部表征,使AI能够像人类一样通过“想象”预演行动后果,实现反事实推理(即回答“如果采取不同行动会如何”的问题)。
2025-06-15 11:51:43
1090
原创 如何编写高效的Prompt:从入门到精通
Prompt是与AI模型交互时输入的指令或问题,它告诉AI你希望它做什么。可以把Prompt想象成给AI下达的任务书——任务书越清晰明确,AI完成得就越好。编写高效的Prompt是一项可以通过练习不断提升的技能。记住,好的Prompt就像好的问题一样,已经包含了答案的种子。通过本文介绍的原则和技巧,你现在已经具备了编写专业级Prompt的基础知识。实践是提高的关键,所以不妨现在就尝试为你的下一个AI交互设计一个精心构思的Prompt吧!
2025-06-14 22:30:48
1041
原创 DeepSeek介绍
DeepSeek是一家主攻大模型研发与应用的中国AGI科技公司,其开源推理模型DeepSeek-R1凭借强化学习技术,在数学、代码、自然语言推理等任务上性能比肩OpenAI o1正式版且可免费商用。它能为用户提供智能对话、文本生成、代码补全、文件读取等多场景应用,而从入门到精通的关键在于理解推理模型与通用模型的差异,掌握提示语设计策略,包括精准定义任务、分解复杂问题、合理运用指令驱动与需求导向等方法,同时规避幻觉生成、过度指令等常见陷阱,以实现高效的人机协作。公司与模型简介。
2025-06-14 16:17:57
874
原创 TensorFlow 与 PyTorch区别
PyTorch 在学术界和开源社区的主导地位日益增强(如 Hugging Face 的 NLP 模型库),而 TensorFlow 在工业界(尤其是 Google 生态)仍占优势。两者均在向“动态图 + 静态图编译”融合的方向发展(如 PyTorch 2.0 的。和 TensorFlow 的 Eager Execution)。
2025-06-13 09:31:44
1129
1
原创 pt模型转tflite格式的血与泪
用yolov8n训练完手势数据后,需要用到安卓移动端,所以需要转为tflite格式,不清楚各种格式的可以看我另一篇文章.pt文件转成.tflite文件的原理:是将.pt文件转换成一种中间表示形式.onnx后再转换成.tflite格式,具体流程是:.pt => .onnx => .pb => .tflite建议:能直接训练出来.tflite还是用tensorflow训练。
2025-06-13 09:31:10
790
2
原创 MediaPipe如何训练自己的手势数据
前言:由于Google上面提供的默认模型只包含7种手势,如何自定义自己的模型,虽然官网给了示例,但是是基于Google的平台Colab运行的,这个需要传文件到Google云盘,然后也比较麻烦,那么如何在本地运行,折腾了挺久,网上太多无效的文章,所以在这里分享。2、查看模型接收的格式,可以运行官网示例,下载官网示例数据集进行查看。整理好自己的数据集,修改数据集路径即可,hagrid-sample-30k-384p 数据集是hagrid的精简版,包含18种手势和无手势,可在我的资源里面进行下载。
2025-06-12 16:58:19
507
原创 安装mediapipe-model-maker报错解决
尝试过各种方法,一直没有解决,后面使用Windows环境下的wsl解决,因为是Linux内核,Python 环境采用 3.10,因为这个依赖 Tensorflow,Tensorflow不支持太高版本的 Python。在Windows下执行。
2025-06-12 16:17:12
287
原创 YOLO训练保持原有识别能力
YOLOv8训练新数据集时会出现灾难性遗忘问题,导致模型丢失原有识别能力。本文提供了三种解决方案:1)联合训练新旧数据集;2)迁移学习冻结部分网络层;3)模型集成分别推理。关键措施包括合并数据集、降低学习率、使用余弦退火和学习率衰减等。最佳实践建议保留部分旧数据样本,确保标注格式统一,并延长训练周期。验证时需同时评估新旧类别性能,注意监控各类别AP变化。对于新旧任务差异过大的情况,建议训练两个独立模型。
2025-06-06 16:26:43
501
原创 LOOI机器人的技术实现解析:从手势识别到边缘检测
LOOI机器人创新性地融合智能手机与专用硬件,通过多模态技术实现情感化交互。其核心技术架构采用分层设计:硬件层提供传感器支持,手机层负责计算,软件层整合传统算法与大模型。手势识别结合MediaPipe关键点检测与红外传感器,物体识别采用YOLOv5等轻量模型与大模型语义理解互补,边缘检测依靠多传感器融合确保安全移动。这种混合架构平衡了性能与功耗,传统算法处理实时任务,大模型负责复杂认知,既保障隐私又实现自然交互,展现了AI硬件领域的前沿设计思路。
2025-06-06 10:06:54
1042
原创 ML Kit与YOLO:移动AI与实时检测终极对决
ML Kit和YOLO是两种不同的技术方案,虽然都涉及计算机视觉和目标检测,但它们在设计目标、技术实现和应用场景上有显著差异。总之,ML Kit是“低代码工具”,而YOLO是“可编程框架”,根据项目需求选择或组合即可。
2025-06-05 14:34:41
345
原创 Jupyter Notebook 是否需要与环境绑定
Jupyter Notebook 是否与环境绑定以及是否需要每个环境都安装,取决于你的使用需求。启动 Jupyter 后,可以在界面中选择不同的内核(Kernel)切换环境。这样启动的 Jupyter 会默认使用当前环境的 Python。后,Jupyter 会自动检测所有已安装。此后新建的 Conda 环境只需安装。,即可在 Jupyter 中直接使用。安装 Jupyter,然后通过。
2025-05-29 16:18:32
455
原创 LLM长期记忆和上下文对话的区别
(如GPT-4的32k tokens),仅能处理当前会话内的信息。通过外部系统(如数据库、向量存储)实现跨会话、跨任务的信息持久化存储。LLM长期记忆和上下文对话是AI系统中两种不同的记忆机制,它们在功能、技术实现和应用场景上存在显著差异。例如,AI助手可先用上下文窗口处理当前对话,同时调用Memobase检索用户历史偏好生成个性化回复。:结构化、可扩展的“外部记忆库”,需结合检索增强生成(RAG)等技术调用。:短时、临时的“工作记忆”,受限于窗口大小和注意力衰减效应。
2025-05-26 11:41:04
418
原创 Dify长期记忆插件: Mem0 与 Memobase
前言:如何在Dify上面快速实现长期记忆(不了解长期记忆的可以查看文章)。技术选型在开发实现中占据重要地位,Dify目前提供了众多插件,我们来对比热门的 mem0 和 memobase。在技术架构、应用场景和功能特性上存在显著差异。需要快速集成动态记忆、实时性要求高(如聊天机器人)、开发资源有限的中小型项目。,通过实时更新和衰减机制保持记忆的新鲜度;需长期用户画像分析、高并发处理(如教育平台)、隐私敏感的企业级应用。作为 Dify 平台中两种主流的记忆组件,,通过结构化存储实现长期记忆的精准调用。
2025-05-26 11:38:37
1455
原创 CentOSStream9安装Miniconda,亲测!
选择安装路径(默认 ~/miniconda3),或自定义路径(如 /opt/miniconda3)。询问是否初始化 Conda 时,输入 yes(会自动添加环境变量)。确保服务器有 sudo 权限 或直接以 root 用户 操作。如果安装到系统目录(如 /opt),需确保有写入权限。按 Enter 阅读许可协议,输入 yes 同意。有任何疑问可留言或私聊!
2025-05-24 13:55:18
356
原创 AI玩具方案
• 优势:海外云服务商提供多语种支持(如英语、西班牙语、法语等),且具备成熟的噪声处理、远场识别能力,无需自研声学模型。• 自建场景:若需定制IP角色声音(如玩具专属语音),可部署开源模型Tortoise-TTS(需NVIDIA显卡)。• 自建高频语种TTS模型(Tortoise-TTS),租用GPU服务器部署轻量级大模型(如Phi-3)。• 低频长尾需求(如小语种/方言):通过自建模型+缓存(如Redis)降低API调用频次。• 推荐方案:混合部署(核心语种用API,小众语种自建)
2025-05-10 11:02:10
1012
原创 Conda激活环境无效
首先手动加载 Conda 配置(注意在管理员的cmd窗口或者powershell窗口)如果执行报错如下:. “C:\software\anaconda3\shell\condabin\conda-hook.ps1” . : 无法加载文件C:\software\anaconda3\shell\condabin\conda-hook.ps1,因为在此系统上禁止运行脚本那么按下面流程解决。
2025-05-09 11:54:42
320
原创 Windows下Dify连接Ollama无效
• 版本检查:确认Dify和Ollama均为最新版本,避免已知兼容性问题。• 若Dify通过Docker部署,需使用宿主机IP(如。• 模型名称匹配:确保Dify中填写的模型名称(如。• 检查Docker容器是否在同一网络,或通过。• 模型兼容性:部分模型可能需要额外参数(如。),需参考Ollama文档调整Dify配置。)与Ollama已下载的模型完全一致。• 验证模型是否下载成功(如。若未下载模型,需先执行。需要管理员打开cmd。
2025-05-09 09:55:33
1162
原创 Dify工作流接收API请求带文件(有小坑)
在上面这样一个工作流中,开始节点需要接收一个音频文件,那么如何构建请求。首先看一下官方给的示例,这里注意如果采用 local_file 模式,需要先调用上传文件接口,然后拿到文件id。实际请求如下,file 需要放到 inputs 里面。如果还有其他疑问,欢迎留言探讨!
2025-05-08 17:24:03
1766
13
原创 在线dify访问本地ollama报错
• 安全警告:暴露公网端口需启用TLS加密,可参考Ollama官方文档配置HTTPS。• 替代方案:若企业有云服务器,可在云端部署Ollama并通过VPC专线连接Dify。• 性能优化:若需长期使用,建议购买Cpolar付费套餐获得固定域名。• 任务栏右键Ollama图标 → 退出 → 重新启动Ollama。右键点击 此电脑 → 属性 → 高级系统设置 → 环境变量。• 基础URL:内网穿透地址或映射后的公网地址。→ 设置 → 模型供应商 → Ollama。• 外部端口:任意未占用端口(如。
2025-05-08 10:37:53
1685
原创 Python 常用Web框架对比
• 理由:内置Admin后台、权限系统,适合教育管理系统等需要快速开发的全栈项目。• "包含电池"设计,内置ORM、Admin后台、认证系统等20+组件。• 短板:性能相对较低(单请求响应约50ms),灵活性受限。• 200KB轻量内核,支持按需加载扩展(如数据库、表单)• 严格MVC架构规范,插件化开发支持(如DRF扩展)• 高性能选择:FastAPI(自动化文档+异步支持)• 案例:智能客服系统(推理延迟优化至300ms)• 备选方案:Sanic(金融级低延迟场景)
2025-04-22 16:25:19
565
原创 主流向量数据库核心技术对比与选型指南(2025年4月)
2025年向量数据库市场呈现三大趋势——多模态支持扩展至视频流处理、边缘端推理延迟突破50ms阈值、隐私计算与联邦学习深度整合。◦ 分布式架构支持十亿级向量规模,延迟低至毫秒级,适用于超大规模企业级场景。◦ 提供IVF_FLAT、HNSW等6种索引算法,灵活平衡精度与效率。◦ 全托管云服务支持分钟级部署,API调用成功率99.99%◦ 内置RBAC权限体系与数据加密功能,满足金融级安全需求。◦ 支持向量与标量数据联合检索,满足多条件过滤需求。◦ 支持动态数据更新与混合搜索,适配实时业务需求。
2025-04-15 17:15:29
747
原创 主流Embedding模型优劣势解析与技术选型指南(2025年4月)
◦ 长文本处理能力弱于BGE-M3(5000+ tokens文档召回率低28%)• BGE-M3支持4bit量化,显存占用可压缩至2.1GB(精度损失<5%)◦ 支持边缘计算部署(内存占用3.2GB,i9处理器45ms/token)◦ 多语言支持(194种语言)与长文本处理(8K tokens)能力双优。◦ 金融数据向量映射误差比BGE-M3低0.08(余弦相似度)◦ 中文语义捕捉能力弱于BGE-M3(测试低15-20%)◦ 显存占用高达6.8GB(FP16),需高端显卡支持。
2025-04-15 17:11:30
2243
原创 企业级大模型落地核心工具深度解析:Ollama、vLLM与LMDeploy技术对比
◦ PagedAttention技术:显存利用率提升3倍,支持10万token超长文本生成。测试环境:单卡A100-80G,Qwen2-7B/72B模型,输入512tokens。◦ 硬件友好:6GB显存GPU即可运行7B模型,M1/M2芯片优化出色。◦ 隐私保障:完全离线运行,内置1700+量化模型(int4为主)◦ 4bit量化:推理速度达FP16的2.4倍,显存占用减少60%◦ 极简部署:支持Windows/macOS/Linux全平台,:LMDeploy+昇腾910B实现国产化替代,成本降低40%
2025-04-15 15:17:15
1052
原创 Ollama模型显存管理机制解析与Flask部署方案对比
• PyTorch与CUDA版本不匹配会导致显存异常(推荐CUDA 12.1 + PyTorch 2.3)。• 部署7B模型时,启动后未调用时显存占用约6GB,调用后峰值占用8GB,闲置5分钟后降至6GB。• 示例:24GB显存服务器最多部署3个7B模型(3×6GB=18GB)。• 若服务器配置24GB显存,可同时保留3个7B模型权重以支持快速切换。• 启用Ollama分块加载机制,避免单次显存溢出。• 若同时运行多个模型,需预留20%显存冗余。:7B模型显存从8GB→4.8GB。Ollama部署模型后,
2025-04-14 23:04:10
1120
【多线程编程】基于Java的多线程技术详解:从基础概念到高级应用的设计与实现
2025-06-11
【Java技术演进】JDK8-17新特性详解:语法优化、API更新与GC改进助力高效开发从JDK8(下)
2025-06-11
【Java技术领域】JDK 8-17新特性详解:版本迭代、关键特性和应用实践(上)
2025-06-11
【Java编程技术】深入解析Java反射机制及其应用:类加载、API操作与动态性实现
2025-06-11
大模型术语表:涵盖AI对话、图像、视频等多领域代表性产品及关键技术概念解析
2025-06-11
Delphi课程设计.zip
2021-03-04
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人