Distribution focal loss
- 将坐标可能的取值范围离散化为 i 个 bins(区间),并让模型预测该坐标值落在每个 bin 内的概率分布,最终通过加权求和得到连续坐标估计。
- 当 xxx 接近 lll 时,plp_lpl 应趋近 1;反之亦然。
2.概率权重与距离成反比 (这里理解为标签,而非预测概率)
Bins: [0,1) [1,2) [2,3) [3,4)
|-------|-------|-------|
-
若 x 靠近左侧 bin 的边界 如 x=1.1 ,则 plp_lpl ≈ 0.9 , prp_rpr ≈ 0.1;即:
概率标签 plp_lpl=2-1.1=0.9
概率标签 prp_rpr=1.1-1=0.1 -
若 x 靠近右侧 bin 的边界 如 x=1.9 ,则 plp_lpl ≈ 0.1 , prp_rpr ≈ 0.9;即:
概率标签 plp_lpl=2-1.9=0.1
概率标签 prp_rpr=1.9-1=0.9
-
计算预测坐标 (倒推标签坐标)
真实坐标 x=1.7 → 落在 bin_1=[1,2) 和 bin_2=[2,3) 之间;概率标签 plp_lpl=2-1.7=0.3
概率标签 prp_rpr=1.7-1=0.7x^=0.3∗1+0.7∗2=1.7\hat{x}=0.3*1+0.7*2=1.7x^=0.3∗1+0.7∗2=1.7
-
示例
真实坐标 x=1.7 → 落在 bin_1=[1,2) 和 bin_2=[2,3) 之间;
Bins: [0,1) [1,2) [2,3) [3,4)
|-------|-------|-------|
step 1: 生成标签
plabelp_{label}plabel=[0,0.3,0.7,0]
step 2: 模型预测
假设刚开始预测结果为:
ppredp_{pred}ppred=[0.1,0.2,0.6,0.1]
step 3:计算 loss
loss = -(0.3log(0.2) + 0.7log(0.6)) ≈0.89
step 4: 推理坐标
x^=0.2∗1+0.6∗2=1.4\hat{x}=0.2*1+0.6*2=1.4x^=0.2∗1+0.6∗2=1.4