Distribution focal loss

Distribution focal loss

  1. 将坐标可能的取值范围离散化为 i 个 bins(区间),并让模型预测该坐标值落在每个 bin 内的概率分布,最终通过加权求和得到连续坐标估计。

在这里插入图片描述
在这里插入图片描述

  • xxx 接近 lll 时,plp_lpl 应趋近 1;反之亦然。

2.概率权重与距离成反比 (这里理解为标签,而非预测概率)

Bins:    [0,1)   [1,2)   [2,3)   [3,4)
          |-------|-------|-------|
  • 若 x 靠近左侧 bin 的边界 如 x=1.1 ,则 plp_lpl ≈ 0.9 , prp_rpr ≈ 0.1;即:
    概率标签 plp_lpl=2-1.1=0.9
    概率标签 prp_rpr=1.1-1=0.1

  • 若 x 靠近右侧 bin 的边界 如 x=1.9 ,则 plp_lpl ≈ 0.1 , prp_rpr ≈ 0.9;即:
    概率标签 plp_lpl=2-1.9=0.1
    概率标签 prp_rpr=1.9-1=0.9

  1. 计算预测坐标 (倒推标签坐标)
    真实坐标 x=1.7 → 落在 bin_1=[1,2) 和 bin_2=[2,3) 之间;

    概率标签 plp_lpl=2-1.7=0.3
    概率标签 prp_rpr=1.7-1=0.7

    x^=0.3∗1+0.7∗2=1.7\hat{x}=0.3*1+0.7*2=1.7x^=0.31+0.72=1.7

  2. 示例
    真实坐标 x=1.7 → 落在 bin_1=[1,2) 和 bin_2=[2,3) 之间;

Bins:    [0,1)   [1,2)   [2,3)   [3,4)
          |-------|-------|-------|

step 1: 生成标签
plabelp_{label}plabel=[0,0.3,0.7,0]

step 2: 模型预测
假设刚开始预测结果为:
ppredp_{pred}ppred=[0.1,0.2,0.6,0.1]

step 3:计算 loss
loss = -(0.3log(0.2) + 0.7log(0.6)) ≈0.89

step 4: 推理坐标
x^=0.2∗1+0.6∗2=1.4\hat{x}=0.2*1+0.6*2=1.4x^=0.21+0.62=1.4

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值