YOLOv13改进策略【YOLO和Mamba】| CVPR 2025:EfficientViM 压缩隐藏状态空间进行通道混合、单头设计减少内存操作,提升目标检测效率与精度

一、本文介绍

本文记录的是利用EfficientViM Block模块优化YOLOv13的目标检测网络模型

EfficientViM Block(基于隐藏状态混合器的状态空间对偶性模块) 的设计旨在,提升特征提取效率,同时兼顾全局依赖捕捉与局部细节保留。本文将深入研究EfficientViM Block的原理,并将其应用到YOLOv13中,通过重构特征提取流程、减少内存绑定操作、融合多阶段特征,增强模型在资源受限环境下的检测性能与速度


二、EfficientViM介绍

EfficientViM: Efficient Vision Mamba with Hidden State Mixer based State Space Duality

2.1 设计出发点

EfficientViM Block的设计核心是解决现有视觉模型在资源受限环境下的效率与性能平衡问题,具体出发点包括:

  1. 现有模型的瓶颈
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值