一、本文介绍
本文记录的是基于MobileNet V1的YOLOv13轻量化改进方法研究。
MobileNet V1
基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型、低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应
用到YOLOv13
中,有望借助其高效的结构和特性,提升YOLOv13
在计算资源有限环境下的性能表现,同时保持一定的精度水平。
文章目录
二、MoblieNet V1设计原理
2.1 出发点
在许多实际应用如机器人、自动驾驶和增强现实中,识别任务需要在计算资源有限的平台上及时完成。但以往为提高准确性而构建的更深更复杂的网络,在尺寸和速度方面并不高效。因此,需要构建小型、低延迟的模型来满足移动和嵌入式视觉应用的设计要求。