YOLOv13改进策略【Backbone/主干网络】| 替换骨干网络为MoblieNetV1,用于移动视觉应用的高效卷积神经网络

一、本文介绍

本文记录的是基于MobileNet V1的YOLOv13轻量化改进方法研究

MobileNet V1基于深度可分离卷积构建,其设计旨在满足移动和嵌入式视觉应用对小型低延迟模型的需求,具有独特的模型收缩超参数来灵活调整模型大小与性能。本文将MobileNet V1应用到YOLOv13中,有望借助其高效的结构和特性,提升YOLOv13在计算资源有限环境下的性能表现,同时保持一定的精度水平。


二、MoblieNet V1设计原理

2.1 出发点

在许多实际应用如机器人、自动驾驶和增强现实中,识别任务需要在计算资源有限的平台上及时完成。但以往为提高准确性而构建的更深更复杂的网络,在尺寸和速度方面并不高效。因此,需要构建小型、低延迟的模型来满足移动和嵌入式视觉应用的设计要求。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值