YOLOv13改进策略【Backbone/主干网络】| 替换骨干网络为 GhostNet V3 2024华为的重参数轻量化模型

一、本文介绍

本文记录的是基于 GhostNetV3 的 YOLOv13轻量化改进方法研究

GhostNetV3的轻量模块采用重参数化方法,训练时为深度可分离卷积1×1卷积添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现YOLOv13的轻量化改进。


二、GhostNet V3模型轻量化设计

GhostNetV3: Exploring the Training Strategies for Compact Models

GhostNetV3旨在为边缘设备设计高效的轻量模型,通过独特的模块设计,在保持模型较小尺寸和快速推理速度的同时,提高模型性能

2.1 出发点

为满足边缘设备有限的内存和计算资源需求,需要设计计算成本低、推理速度快的轻量模型。深度可分离卷积1×1卷积

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Limiiiing

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值