一、本文介绍
本文记录的是基于 GhostNetV3 的 YOLOv13轻量化改进方法研究。
GhostNetV3
的轻量模块采用重参数化方法,训练时为深度可分离卷积
和1×1卷积
添加线性并行分支,推理时通过逆重参数化移除分支、折叠操作,能够在不增加推理成本的同时提高性能,从而实现YOLOv13
的轻量化改进。
文章目录
二、GhostNet V3模型轻量化设计
GhostNetV3: Exploring the Training Strategies for Compact Models
GhostNetV3
旨在为边缘设备设计高效的轻量模型,通过独特的模块设计,在保持模型较小尺寸和快速推理速度的同时,提高模型性能。
2.1 出发点
为满足边缘设备有限的内存和计算资源需求,需要设计计算成本低、推理速度快的轻量模型。深度可分离卷积
和1×1卷积