LeetCode------爬楼梯

本文探讨了经典的爬楼梯问题,通过分析不同爬楼方式,将其转化为求解斐波那契数列的问题。提供了两种算法实现,一种使用动态规划的方法,空间复杂度为O(n),另一种优化后的算法将空间复杂度降低到O(1)。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

https://leetcode-cn.com/problems/climbing-stairs/

假设你正在爬楼梯。需要 n 阶你才能到达楼顶。

每次你可以爬 1 或 2 个台阶。你有多少种不同的方法可以爬到楼顶呢?

注意:给定 n 是一个正整数。

示例 1:

输入: 2
输出: 2
解释: 有两种方法可以爬到楼顶。
1.  1 阶 + 1 阶
2.  2 阶

示例 2:

输入: 3
输出: 3
解释: 有三种方法可以爬到楼顶。
1.  1 阶 + 1 阶 + 1 阶
2.  1 阶 + 2 阶
3.  2 阶 + 1 阶

分析:当在第n阶时,只可能由第n-1阶走一步,或者第n-2阶走两步到达,那么走到第n步方法为n-1步方法与n-2步方法之和。

所以这道题本质上是求斐波拉契数列。

int climbStairs(int n) {
    int *p;
    p = (int *)malloc(sizeof(int)*(n+2));  //至少保证有三个元素,否则会越界
    p[1] = 1;
    p[2] = 2;
    if(n == 1||n==2) return p[n];
    for(int i=3;i<=n;i++){
        p[i] = p[i-1]+p[i-2];
    }
    return p[n];
}//4ms 时间复杂度O(n) 空间复杂度O(n)

 

改进算法:

int climbStairs(int n) {
    int sum=0,num1=1,num2=2;
    if(n==1) return num1;
    if(n==2) return num2;
    while(n>=3){
        sum = num1+num2;
        num1 = num2;
        num2 = sum;
        n--;
    }
    return sum;
}时间复杂度O(n) 空间复杂度O(1)

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值