Cost Function(成本函数)

文章讲述了在机器学习模型训练过程中,目标是通过最小化预测值与实际类属性值之间的误差(称为预测误差),利用成本函数L(如均方误差)来衡量这些差异。成本函数通过求所有点误差的平方和来确定模型参数的更新。

When training the model, the goal is to minimize the error and update the model coefficients to achieve the best fit line.

Error is the difference between predicted value (Y) generated by the model and the class attribute value

机器学习中成本函数L是用于计算误差的一个函数

L =\sum_{i=1}^{n}(y_i-\widehat{y_i})^2

y_i 是Observed value,图中彩色点的y值

\widehat{y_i} 是Predicted value,从彩色点到直线并垂直于x轴的线

y_i-\widehat{y_i} 是彩色线的长度,其含义是单个点的误差

将所有点的误差相加并平方的结果就是成本函数所得出的结果

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值