SLAM会议笔记(三)V-LOAM

该博客介绍了一种新的视觉-LiDAR里程计和映射框架,旨在提升系统在剧烈运动和视觉特征缺失情况下的性能。通过视觉里程计高频低精度估计帧间运动,结合校准后的高频LiDAR点云匹配,实现运动估计和点云配准的修正。文章详细阐述了视觉和雷达里程计的损失函数以及运动估计过程,并利用时间平均的视觉转移矩阵作为雷达里程计初始化,进一步优化运动估计。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Visual-lidar Odometry and Mapping: Low-drift, Robust, and Fast

Abstract

提出了一种新的使用激光雷达里程计和视觉里程计的框架,提升了表现,特别是在剧烈运动和短暂缺失视觉特征的情况。提出使用视觉里程计高频低精度在线估计帧间运动并且匹配校准高频雷达采集的点云,然后基于激光雷达里程计同时修正运动估计和点云配准。(结合DEMO和LOAM两种方法)

SYSTEM OVERVIEW

在这里插入图片描述

视觉里程计

特征点的运动描述如下:
在这里插入图片描述
对有深度信息的特征点,将等式按行展开得到三个等式,联立三个等式得到如下等式:
在这里插入图片描述
在这里插入图片描述
对无深度信息的特征点展开等式化简得到:
在这里插入图片描述
由此分别得到有深度信息和无深度信息时的运动估计损失函数,用非线性最小二乘求解。

雷达里程计

对视觉里程计计算的转移矩阵取时间平均,做为雷达里程计的非线性最小二乘的初始值,对运动估计进行修正。
在这里插入图片描述
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

sdhdwyx

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值