TPAMI 2024 | 基于上下文的贝叶斯非参数模型元强化学习

Context-Based Meta-Reinforcement Learning With Bayesian Nonparametric Models

题目:基于上下文的贝叶斯非参数模型元强化学习

作者:Zhenshan Bing; Yuqi Yun; Kai Huang; Alois Knoll
源码:https://github.com/Ghiara/MELTS


摘要

深度强化学习代理通常需要收集大量的交互才能解决单一任务。相比之下,元强化学习(meta-RL)旨在通过利用在一组类似任务上训练获得的知识,快速适应新任务,仅需少量经验。基于上下文的最先进的元强化学习算法使用上下文来编码任务信息,并训练一个依赖于推断出的潜在任务编码的策略。然而,大多数最近的工作局限于参数化任务,其中少数变量控制任务分布的全部变化,并且由于少次适应设置,未能在非平稳环境中工作。为了解决这些限制,我们提出了一种名为MEta-reinforcement Learning with Task Self-discovery (MELTS) 的方法,它自适应地学习定性不同的非参数化任务,并以零次拍摄的方式适应新任务。我们引入了一种基于高斯无限混合的新深度聚类框架(DPMM-VAE),结合了狄利克雷过程混合模型(DPMM)和变分自编码器(VAE),以自适应的方式同时学习任务表示和聚类任务。将DPMM-

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值