MICCAI 2025 | 单模态化极异构多模态医学图像配准

论文信息

题目:Mono-Modalizing Extremely Heterogeneous Multi-Modal Medical Image Registration
单模态化极异构多模态医学图像配准
作者:Kyobin Choo, Hyunkyung Han, Jinyeong Kim, Chanyong Yoon, Seong Jae Hwang
源码:https://github.com/MICV-yonsei/M2M-Reg

论文创新点

  1. 提出全新框架:论文提出M2M - Reg框架,创新性地将多模态DIR问题重新表述为单模态问题,在保留现有架构范式的同时,仅使用单模态相似性对多模态DIR模型进行无监督训练,从而绕过了多模态相似性度量的局限性。
  2. 引入正则化方法:引入梯度循环一致性(GradCyCon)正则化器,利用M2M - Reg中的循环映射过程来促进
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小白学视觉

您的赞赏是我们坚持下去的动力~

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值