DAY 15补 对称二叉树

文章讲述了如何通过递归和迭代的方式判断给定的二叉树是否轴对称,重点在于理解比较的是根节点左右子树的翻转对称性,以及后序遍历的应用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对称二叉树

给你一个二叉树的根节点 root , 检查它是否轴对称。
在这里插入图片描述

输入:root = [1,2,2,3,4,4,3]
输出:true

在这里插入图片描述

输入:root = [1,2,2,null,3,null,3]
输出:false

思路

首先想清楚,判断对称二叉树要比较的是哪两个节点,要比较的可不是左右节点
对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,理解这一点就知道了其实我们要比较的是两个树(这两个树是根节点的左右子树),所以在递归遍历的过程中,也是要同时遍历两棵树

比较的是两个子树的里侧和外侧的元素是否相等。如图所示:
在这里插入图片描述
那么遍历的顺序应该是什么样的呢?

本题遍历只能是“后序遍历”,因为我们要通过递归函数的返回值来判断两个子树的内侧节点和外侧节点是否相等。
正是因为要遍历两棵树而且要比较内侧和外侧节点,所以准确的来说是一个树的遍历顺序是左右中,一个树的遍历顺序是右左中。【把一个左、一个右节点的信息,返回给其二者的父节点:也就是说,只有其左右节点都是对称的,把结果返回给父节点,然后才能判断父节点是否对称】
但都可以理解算是后序遍历,尽管已经不是严格上在一个树上进行遍历的后序遍历了。

递归法

递归三部曲
1.确定递归函数的参数和返回值
因为我们要比较的是根节点的两个子树是否是相互翻转的,进而判断这个树是不是对称树,所以要比较的是两个树,参数自然也是左子树节点和右子树节点。

返回值自然是bool类型。

bool compare(TreeNode* left, TreeNode* right)

2.确定终止条件
要比较两个节点数值相不相同,首先要把两个节点为空的情况弄清楚!否则后面比较数值的时候就会操作空指针了。

节点为空的情况有:(注意我们比较的其实不是左孩子和右孩子,所以如下称之为左节点右节点)

  • 左节点为空,右节点不为空,不对称,return false
  • 左不为空,右为空,不对称 return false
  • 左右都为空,对称,返回true

此时已经排除掉了节点为空的情况,那么剩下的就是左右节点不为空:

  • 左右都不为空,比较节点数值,不相同就return false

此时左右节点不为空,且数值也不相同的情况我们也处理了。

代码如下:

if (left == NULL && right != NULL) return false;
else if (left != NULL && right == NULL) return false;
else if (left == NULL && right == NULL) return true;
else if (left->val != right->val) return false; // 注意这里我没有使用else

注意上面最后一种情况,没有使用else,而是else if, 因为我们把以上情况都排除之后,剩下的就是 左右节点都不为空,且数值相同的情况。

3.确定单层递归的逻辑
此时才进入单层递归的逻辑,单层递归的逻辑就是处理 左右节点都不为空,且数值相同的情况。

  • 比较二叉树外侧是否对称:传入的是左节点的左孩子,右节点的右孩子。
  • 比较内侧是否对称,传入左节点的右孩子,右节点的左孩子。
  • 如果左右都对称就返回true ,有一侧不对称就返回false 。
    如上代码中,我们可以看出使用的遍历方式,左子树左右中,右子树右左中,所以我把这个遍历顺序也称之为“后序遍历”(尽管不是严格的后序遍历)。

最后递归的C++整体代码如下:

class Solution {
public:
    bool compare(TreeNode* left, TreeNode* right) {
        // 首先排除空节点的情况
        if (left == NULL && right != NULL) return false;
        else if (left != NULL && right == NULL) return false;
        else if (left == NULL && right == NULL) return true;
        // 排除了空节点,再排除数值不相同的情况
        else if (left->val != right->val) return false;

        // 此时就是:左右节点都不为空,且数值相同的情况
        // 此时才做递归,做下一层的判断
        bool outside = compare(left->left, right->right);   // 左子树:左、 右子树:右
        bool inside = compare(left->right, right->left);    // 左子树:右、 右子树:左
        bool isSame = outside && inside;                    // 左子树:中、 右子树:中 (逻辑处理)
        return isSame;
	//else return compare(left->left, right->right) && compare(left->right, right->left);//更简洁
    }
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        return compare(root->left, root->right);
    }
};

迭代法

在迭代法中我们使用了队列,需要注意的是这不是层序遍历,而且仅仅通过一个容器来成对的存放我们要比较的元素,知道这一本质之后就发现,用队列,用栈,甚至用数组,都是可以的。

队列

通过队列来判断根节点的左子树和右子树的内侧和外侧是否相等。
在这里插入图片描述

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        queue<TreeNode*> que;
        que.push(root->left);   // 将左子树头结点加入队列
        que.push(root->right);  // 将右子树头结点加入队列
        
        while (!que.empty()) {  // 接下来就要判断这两个树是否相互翻转
            TreeNode* leftNode = que.front(); que.pop();
            TreeNode* rightNode = que.front(); que.pop();
            if (!leftNode && !rightNode) {  // 左节点为空、右节点为空,此时说明是对称的
                continue;
            }

            // 左右一个节点不为空,或者都不为空但数值不相同,返回false
            if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
                return false;
            }
            que.push(leftNode->left);   // 加入左节点左孩子
            que.push(rightNode->right); // 加入右节点右孩子
            que.push(leftNode->right);  // 加入左节点右孩子
            que.push(rightNode->left);  // 加入右节点左孩子
        }
        return true;
    }
};

把左右两个子树要比较的元素顺序放进一个容器,然后成对成对的取出来进行比较,那么其实使用栈也是可以的。

class Solution {
public:
    bool isSymmetric(TreeNode* root) {
        if (root == NULL) return true;
        stack<TreeNode*> st; // 这里改成了栈
        st.push(root->left);
        st.push(root->right);
        while (!st.empty()) {
            TreeNode* leftNode = st.top(); st.pop();
            TreeNode* rightNode = st.top(); st.pop();
            if (!leftNode && !rightNode) {
                continue;
            }
            if ((!leftNode || !rightNode || (leftNode->val != rightNode->val))) {
                return false;
            }
            st.push(leftNode->left);
            st.push(rightNode->right);
            st.push(leftNode->right);
            st.push(rightNode->left);
        }
        return true;
    }
};

总结

1.如何同时遍历两个二叉树? 在迭代法,添加左右节点的左、右节点进一个队列、栈、或数组中存储,每次成对取出来判断。
2.对于二叉树是否对称,要比较的是根节点的左子树与右子树是不是相互翻转的,其实要比较的是两个树(即根节点的左右子树)

### 对称二叉树的定义 对称二叉树,又称镜像二叉树,是一种特殊的二叉树结构。其特性在于整棵树在其根节点处呈现完全对称的状态。具体来说,对于树中的每一个节点,其左子树与右子树在结构和节点值上均需满足镜面对称的关系[^3]。 这意味着,如果我们将一棵二叉树沿其中心线折叠,左侧部分应能与其右侧部分完美重合。这种性质不仅适用于整个树,还适用于每一层的局部子树。 --- ### 判断对称二叉树的方法 #### 1. **递归方法** 递归方法通过构建一个辅助函数 `isMirror` 来比较两棵子树是否互为镜像。核心逻辑如下: - 若两棵子树均为 `None`,则认为是对称的。 - 若仅有一方为 `None` 或者两者值不同,则不对称。 - 若当前节点值相同,继续递归检查左子树的左孩子与右子树的右孩子,以及左子树的右孩子与右子树的左孩子是否对称。 以下是基于 Python 的递归实现代码[^4]: ```python class TreeNode: def __init__(self, val=0, left=None, right=None): self.val = val self.left = left self.right = right class Solution: def isSymmetric(self, root: TreeNode) -> bool: if not root: # 如果根节点为空,视为空树,返回True return True def is_mirror(left, right): if not left and not right: # 左右子树都为空,对称 return True if not left or not right: # 一方为空另一方不为空,不对称 return False if left.val != right.val: # 值不同,不对称 return False # 继续递归检查外侧和内侧是否对称 outer = is_mirror(left.left, right.right) inner = is_mirror(left.right, right.left) return outer and inner return is_mirror(root.left, root.right) ``` 此代码实现了完整的递归过程,并利用了分治的思想来逐步缩小问题规模。 --- #### 2. **迭代方法** 除了递归之外,还可以采用队列或栈的方式来进行层次遍历并验证对称性。这种方法避免了递归可能带来的堆栈溢出风险,尤其适合于深度较大的二叉树。 基本思路是将待比较的节点成对加入数据结构中,在每次循环时取出一对节点进行对比。若发现任何一处不符合对称条件,则立即终止程序并返回 `False`;否则直到队列清空为止皆未发现问题,则返回 `True`。 下面展示了一个使用双端队列(deque)完成这一操作的例子[^5]: ```python from collections import deque class Solution: def isSymmetric(self, root: TreeNode) -> bool: if not root: return True queue = deque([(root.left, root.right)]) while queue: node1, node2 = queue.popleft() if not node1 and not node2: # 两个节点都是None continue if not node1 or not node2: # 只有一个节点是None return False if node1.val != node2.val: # 节点值不同 return False # 将需要进一步比较的节点按顺序压入队列 queue.append((node1.left, node2.right)) queue.append((node1.right, node2.left)) return True ``` --- ### 总结 无论是递归还是迭代方式,其实质都在逐级检验每一对对应位置上的节点是否具有相同的属性。前者更直观易懂但也存在潜在性能隐患;后者虽然稍显复杂却更加稳健可靠。实际应用时可根据具体情况灵活选用合适的技术手段。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值