
flink
文章平均质量分 89
主要为flink源码分析及日常使用注意事项
Edingbrugh.南空
这个作者很懒,什么都没留下…
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
Flink 集成 Cassandra
本文详细介绍了Apache Flink与Cassandra集成的实战方法,涵盖核心依赖配置、数据读写全流程。首先强调版本兼容性,提供依赖管理示例和两种连接配置方式(配置文件与代码动态配置)。在数据写入部分,展示了通过POJO映射实现基础写入,并给出批量写入、一致性级别等高级优化配置。对于数据读取,分别介绍了批处理场景的直接读取和流处理场景的轮询机制实现。文章内容实用性强,包含完整代码示例,可帮助开发者快速实现高性能流处理系统与分布式存储的高效协同。原创 2025-08-13 14:28:06 · 416 阅读 · 0 评论 -
Flink自定义函数
Flink 自定义函数(UDF)扩展 Table API/SQL 能力,支持标量函数、表值函数、聚合函数和表值聚合函数四种类型,分别用于值转换、数据拆分、聚合计算和分组统计等场景。实现要点包括:继承对应基类(如 ScalarFunction)、实现核心逻辑方法(eval/accumulate)、注册函数并调用。关键技巧涉及类型注解(@DataTypeHint)、参数命名(@ArgumentHint)和确定性声明。UDF 通过 open/close 管理生命周期,支持异步和批量处理优化。原创 2025-07-10 14:27:53 · 771 阅读 · 0 评论 -
Flink 2.0 DataStream算子全景
摘要:本文深入解析Apache Flink 2.0的DataStream API算子体系,涵盖核心概念(数据流拓扑、算子链、并行度)、三大算子类型(转换、连接、物理分区)及高级特性(状态管理、时间窗口、容错机制)。重点探讨了算子优化策略,包括链化控制、状态管理、并行度配置和数据倾斜处理,并总结了构建高效流处理pipeline的五大原则。通过系统化的算子分类和最佳实践指导,为开发者提供Flink实时流处理的全面技术参考。(150字)原创 2025-07-10 14:12:37 · 644 阅读 · 0 评论 -
Flink ClickHouse 连接器维表源码深度解析
Flink ClickHouse Connector通过实现LookupTableSource接口提供维表功能,核心类ClickHouseDynamicTableSource负责配置和创建维表查询组件。该功能支持流处理中实时查询ClickHouse数据,通过ClickHouseRowDataLookupFunction执行JDBC查询,并可选配置缓存提升性能。使用时需在SQL中定义维表并进行JOIN关联,系统会自动处理实时查询和数据关联。主要特性包括非嵌套键支持、可配置重试机制以及部分缓存策略(基于访问/写原创 2025-07-06 15:48:01 · 443 阅读 · 0 评论 -
Flink ClickHouse 连接器数据读取源码深度解析
Flink ClickHouse连接器源码解析摘要:该连接器通过AbstractClickHouseInputFormat抽象基类及其子类ClickHouseBatchInputFormat和ClickHouseShardInputFormat实现数据读取功能。核心类采用建造者模式构建,支持字段名、过滤条件等参数配置。针对不同场景,分别提供批量读取(减少数据库交互)和分片读取(并行处理分布式数据)两种实现方式。源码通过连接管理、参数校验和智能路由(根据表类型自动选择输入格式)等机制,确保高效稳定地从Clic原创 2025-07-06 15:44:10 · 573 阅读 · 0 评论 -
Flink ClickHouse 连接器数据写入源码深度解析
Flink ClickHouse 连接器源码分析:数据写入机制探究 摘要:本文深入剖析了Flink与ClickHouse集成连接器的数据写入实现机制。研究围绕AbstractClickHouseOutputFormat核心类及其子类展开,揭示了两种主要写入模式:ClickHouseBatchOutputFormat实现批量写入优化吞吐量,ClickHouseShardOutputFormat支持分布式表的分片写入。通过建造者模式的设计,连接器提供了灵活的参数配置方式,并自动判断使用本地表或分布式表策略。源码原创 2025-07-06 15:42:33 · 977 阅读 · 0 评论 -
Flink ClickHouse 连接器:实现 Flink 与 ClickHouse 无缝对接
Flink ClickHouse 连接器为Apache Flink与高性能列式数据库ClickHouse提供了无缝集成,支持数据读写和Catalog管理。该连接器基于JDBC实现,提供灵活的配置选项,如批量大小、重试次数等。使用前需通过Maven安装依赖,支持丰富的Flink与ClickHouse数据类型映射。通过CREATE TABLE语句可注册ClickHouse表并进行SQL操作,还支持创建ClickHouseCatalog实现多库管理。项目具备开源特性,欢迎用户反馈和贡献代码。原创 2025-07-06 14:41:43 · 1148 阅读 · 1 评论 -
Flink Vitess CDC 环境配置与验证
摘要:本文详细介绍了如何配置 Vitess 集群以支持 CDC(变更数据捕获)功能,并通过 Flink SQL 实现实时数据同步。核心内容包括: Vitess 配置:启用 VStream 服务(需设置 VTGate 的 gRPC 端口和心跳间隔),并验证 VStream 可用性。 Flink 集成:添加 Vitess CDC 连接器依赖,部署 SQL Client。 表定义与参数:重点解析 CDC 关键参数(如 port、tablet.type、snapshot.mode),提供完整的建表示例。 验证与监控原创 2025-07-04 13:44:57 · 695 阅读 · 0 评论 -
Flink TiDB CDC 环境配置与验证
TiDB与Flink CDC集成配置指南 本指南详细介绍了如何配置TiDB数据库与Flink CDC 3.0.1的连接集成。主要内容包括: TiDB核心配置:启用TiCDC服务并验证PD地址 Flink环境集成:添加Maven依赖和部署SQL Client Flink SQL表定义:提供完整建表示例和核心参数说明 环境验证:包括测试数据准备和Flink SQL验证步骤 关键配置要点: 必须配置正确的PD地址和数据库/表名称 支持两种启动模式:全量+增量或仅增量 提供GRPC超时和批量获取并发等优化参数 包含原创 2025-07-04 13:17:24 · 571 阅读 · 4 评论 -
Flink OceanBase CDC 环境配置与验证
摘要:本文详细介绍了OceanBase数据库与Flink的集成配置流程,包含三部分核心内容:1) OceanBase数据库配置,包括环境准备、用户权限设置、LogProxy服务部署;2) Flink环境集成,涉及Maven依赖添加和SQL Client部署;3) Flink SQL表定义与参数详解,提供MySQL和Oracle两种模式的建表示例及核心参数说明。重点涵盖社区版与企业版配置差异、元数据获取方式及CDC连接器关键参数,为实时数据同步提供完整解决方案。原创 2025-07-04 13:14:28 · 1034 阅读 · 0 评论 -
Flink Db2 CDC 环境配置与验证
摘要:本文介绍了如何配置DB2数据库与Flink集成实现变更数据捕获(CDC)。首先在DB2中启用日志归档并创建CDC控制表,然后通过触发器捕获表变更。接着配置Flink环境添加DB2 CDC连接器依赖,详细说明SQL表定义参数。最后提供了完整的Flink SQL建表语句示例及参数说明,包括元数据列配置和核心参数详解。该方案可实现DB2数据库变更的实时捕获与处理。原创 2025-07-04 13:09:33 · 581 阅读 · 0 评论 -
Flink MongoDB CDC 环境配置与验证
摘要: 本文详细介绍了MongoDB CDC(变更数据捕获)的配置与Flink集成方法。首先说明MongoDB环境要求(版本≥3.6、副本集/分片集群、WiredTiger引擎),并给出集群验证命令。其次,通过SQL示例展示如何启用Change Streams、配置权限及PreAndPostImages(MongoDB 6.0+)。接着指导Flink环境部署,包括添加Maven依赖和SQL Client配置。核心部分提供了Flink SQL建表示例,支持嵌套文档、数组及元数据字段,并详解关键参数如连接器类型原创 2025-07-04 13:05:46 · 974 阅读 · 0 评论 -
Flink SQLServer CDC 环境配置与验证
SQL Server CDC 与 Flink 集成配置指南 本文详细介绍了如何将 SQL Server CDC 功能与 Apache Flink 集成,实现数据变更捕获和实时处理。主要内容包括: SQL Server 配置:启用数据库和表级 CDC,创建专用文件组,设置用户权限 Flink 环境准备:添加连接器依赖,部署 SQL Client Flink SQL 配置:表定义语法,核心参数详解(如增量快照、时区设置等) 4.验证测试步骤:测试数据准备,Flink SQL 查询验证,DataStream AP原创 2025-07-04 13:01:53 · 555 阅读 · 1 评论 -
Flink Postgres CDC 环境配置与验证
.flink.streaming.api.environment.StreamExecutionEnvironment; PostgresSource<String> source = PostgresSource.<String>builder() .hostname("192.168.1.100") .port(5432) .database("postgres") .schemaList("public") .tabl原创 2025-07-04 12:56:57 · 1174 阅读 · 0 评论 -
Flink Oracle CDC 环境配置与验证
摘要:Oracle CDC配置与Flink集成指南详解了数据库核心配置和Flink集成步骤。Oracle端需启用归档日志、补充日志并创建专用用户授权,包括CDB/非CDB环境差异配置。Flink环境需添加连接器依赖,通过SQL定义CDC表时需配置关键参数如scan.startup.mode和debezium.log.mining.strategy。完整流程涵盖从数据库准备到Flink表创建的实操细节,确保高效捕获Oracle数据变更。原创 2025-07-04 12:52:06 · 1162 阅读 · 0 评论 -
Flink MySQL CDC 环境配置与验证
MySQL与Flink CDC集成配置指南 本文详细介绍了MySQL服务器与Flink CDC的集成配置步骤: MySQL服务器配置: 启用二进制日志(Binlog)并设为ROW模式 创建专用用户并授权REPLICATION权限 配置唯一Server ID Flink环境准备: 添加Maven依赖或部署JAR包 配置checkpoint间隔 Flink CDC表定义: 提供完整建表示例 详解核心参数如connector、hostname、scan模式等 验证测试: 包括测试数据准备和集成验证 该配置可实现M原创 2025-07-04 12:45:49 · 961 阅读 · 0 评论 -
Apache Flink Kafka 写连接器源码深度剖析
本文深入分析了Apache Flink Kafka写入连接器的源码实现。连接器核心组件包括KafkaSink(入口点)、KafkaWriter(消息写入)、KafkaSerializationSchema(序列化)和KafkaCommittableManager(事务管理)。KafkaSink采用构建器模式配置参数,KafkaWriter负责实际消息写入和事务处理。架构上支持多种语义保证,数据流从Flink处理到序列化再到Kafka写入,具备良好的扩展性和可靠性。原创 2025-06-24 12:47:03 · 448 阅读 · 0 评论 -
Apache Flink Kafka 读取连接器源码深度剖析
本文分析了Apache Flink Kafka读取连接器的核心架构与实现。该连接器采用Source-Split设计模式,主要包含KafkaSource、KafkaSourceReader、KafkaSourceEnumerator等核心组件,支持精确一次语义和动态分区发现。KafkaSource通过构建器模式配置参数,KafkaSourceReader继承自SingleThreadMultiplexSourceReaderBase,负责数据读取和偏移量管理,并在检查点时记录和提交偏移量。整体架构实现了Fli原创 2025-06-24 12:42:54 · 765 阅读 · 0 评论 -
Flink项目基础配置指南
在大数据处理领域,Apache Flink凭借强大的实时流处理和批处理能力,成为众多开发者的首选工具。在日常工作中,开发Flink Jar任务是常见需求,但每次都需重复配置日志、梳理pom依赖、设置打包插件等,流程繁琐且易出错。为提升开发效率,减少重复劳动,将这些基础配置进行整理归纳十分必要。本文将围绕Flink项目的本地日志配置、pom依赖及插件配置展开详细介绍,为开发者提供一套可直接复用的基础配置方案,助力Flink项目高效开发。在Flink项目中,日志是了解任务运行状态、排查问题的重要依据。本地日志配原创 2025-06-23 17:50:39 · 870 阅读 · 0 评论 -
Flink维表应用:从思考到实践的全面解析
Flink维表关联方案解析 本文深入探讨了Flink流处理中维表关联的三种实现方式及其适用场景: 实时Lookup数据库关联:包括同步、异步及带缓存三种模式,适用于流量较少或存在数据热点的场景,但存在数据库压力大或缓存一致性等问题。 预加载维表关联:将维表数据加载到内存中快速查询,适用于数据量小、更新少的场景,但扩展性差且内存消耗大。 维表变更日志关联:通过监听维表变更构建实时关联,适合数据量大、更新频繁的场景,实现复杂度较高。 文章详细分析了各类方案的优缺点,并提供了考量标准(如实现复杂度、吞吐量、数据延原创 2025-06-23 16:48:42 · 530 阅读 · 0 评论 -
Flink中的反压与背压:原理、检测与应对
Flink流处理系统中,反压与背压机制对保障系统稳定性至关重要。本文首先辨析二者概念,指出其本质均为处理数据生产与消费速度不匹配问题。随后剖析反压产生的三大根源:数据生成速度过高、操作符处理速度差异及系统资源不足。通过测试程序演示如何模拟反压场景,并介绍利用subtask状态和Buffer使用率等Metrics指标精准定位反压瓶颈的方法。最后强调开发者需掌握反压分析技术,优化系统配置,确保Flink在大数据场景下的高效稳定运行。文章为处理流计算性能问题提供了系统性解决方案。原创 2025-06-23 16:42:58 · 1171 阅读 · 0 评论 -
Flink SQL执行流程深度剖析:从SQL语句到分布式执行
Flink SQL执行流程解析 Flink SQL的执行流程分为两个核心阶段:首先通过TableEnvironment将SQL语句转换为Operation,随后将Operation转化为Transformation进行分布式执行。在第一阶段,INSERT INTO等SQL语句通过Calcite解析器完成词法语法分析,生成SqlNode并校验后转换为ModifyOperation。第二阶段根据Operation类型进行优化处理,如ModifyOperation会生成执行计划。整个过程基于Calcite实现语法原创 2025-06-23 13:37:46 · 1152 阅读 · 0 评论 -
从Calcite到Flink SQL:解析器的构建奥秘
Flink SQL借助Apache Calcite框架实现强大的SQL处理能力。Calcite作为动态数据管理框架,专注于SQL解析与优化,而将数据存储等功能交由第三方实现。其解析流程包括SQL词法语法校验和AST生成,通过JavaCC工具构建解析器。Flink SQL解析器初始化始于StreamTableEnvironmentImpl,通过PlannerFactoryUtil创建流式或批处理解析器,最终由CalciteParser完成SQL语句解析。这一设计使Flink SQL能高效处理流批数据,同时保持原创 2025-06-23 12:39:32 · 899 阅读 · 0 评论 -
探秘Flink维表:从源码到运行时的深度解析
本文深入探讨Flink在大数据实时处理中的维表关联实现原理。首先解析维表、流表和异步I/O等核心概念,指出维表关联在实时计算中的重要性。随后以JDBC维表为例,详细展示测试环境搭建过程,包括依赖配置和代码实现。通过Kafka数据源与MySQL维表的关联实践,揭示Flink维表JOIN的底层机制,特别分析了处理时间语义下维表快照关联的特性。文章为开发者提供了从理论到实践的完整指导,帮助理解流处理中维表关联的实现原理与优化方向。(150字)原创 2025-06-23 12:36:38 · 1066 阅读 · 0 评论 -
Flink SQL解析工具类实现:从SQL到数据血缘的完整解析
摘要:本文介绍了一个Flink SQL解析工具类的核心功能与实现。该工具基于Apache Calcite解析框架,实现了Flink SQL的语法解析、表结构提取和血缘关系构建。主要功能包括:1)过滤自定义函数并解析SQL语句;2)从CREATE TABLE语句中提取表结构和连接器信息;3)分析INSERT INTO等操作语句构建数据血缘图谱;4)提供SQL语法验证能力。通过分类处理不同类型的SQL节点,工具能够完整解析Flink SQL工作流,为数据治理和血缘分析提供技术支撑。原创 2025-06-23 10:02:14 · 1011 阅读 · 0 评论 -
Flink Client源码深度剖析:解码任务提交流程的底层逻辑
摘要: Flink Client作为用户与集群交互的核心组件,负责解析命令、构建作业图并提交任务。主要流程包括: 参数解析:通过bin/flink脚本启动,最终调用CliFrontend类解析命令行参数,加载全局配置; 环境配置:动态查找配置文件目录(环境变量或默认路径),加载集群配置; 任务执行:根据动作类型(如run、cancel)调用对应方法,并通过validateAndGetActiveCommandLine确定部署模式(如YARN、K8s)。 该过程展现了Flink Client如何将用户指令转化原创 2025-06-23 09:28:44 · 951 阅读 · 0 评论 -
Flink源码阅读环境准备全攻略:搭建高效探索的基石
本文详细介绍了搭建Flink源码阅读环境的完整流程。首先配置JDK和Maven基础环境,推荐使用IntelliJ IDEA作为开发工具;其次通过Git获取Flink源码并导入IDEA;然后进行项目编译和调试配置,包括设置断点和参数;最后针对常见问题提供解决方案。这套环境能有效支持Flink底层原理的深入研究和调试工作,为开发者探索Flink核心机制打下坚实基础。原创 2025-06-22 17:59:10 · 830 阅读 · 0 评论 -
深入解析Flink Local模式启动流程源码:揭开作业初始化的神秘面纱
Flink Local模式启动流程深度剖析:从源码解析作业提交到任务执行的全过程。通过分析ExecutionEnvironment.execute()触发环境初始化,StreamGraph构建及LocalExecutor执行的关键代码,揭示了Local模式无需依赖分布式集群即可运行任务的底层机制。重点解析了Source节点注册、JobClient创建和LocalExecutor任务调度的实现细节,为开发者理解Flink本地执行原理提供了技术参考。原创 2025-06-22 17:51:26 · 293 阅读 · 0 评论 -
Flink图之间流转解析:从逻辑构建到物理执行的深度剖析
Flink作业执行的核心是图结构的流转与转换,主要包括四个关键阶段:StreamGraph(逻辑计算起点)→JobGraph(任务调度蓝图)→ExecutionGraph(物理执行具象)→OptimizedExecutionGraph(性能优化进阶)。这一流转过程涉及算子链式合并、任务实例化、资源调度等关键技术,直接影响作业性能。深入理解不同图结构的特性(如StreamGraph的逻辑算子关系、JobGraph的任务合并机制)和转换原理,有助于开发者优化并行度设置、数据分区策略及资源分配,从而提升处理效率并原创 2025-06-22 17:42:55 · 819 阅读 · 0 评论 -
Flink Table Connectors实现原理深度揭秘:结构化数据交互的底层逻辑
Flink Table Connectors是实现Flink与外部数据系统交互的关键组件,支持结构化数据处理。它以TableFactory为核心,通过TableSource和TableSink分别负责数据读取和写入,将外部数据转换为表结构并与Flink执行引擎协同工作。典型应用包括实时数据分析、数据仓库同步和ETL处理。优化策略包括批量操作、缓存机制和并行处理,以提高性能。通过深入了解其实现原理,开发者可以更高效地构建数据处理应用。原创 2025-06-22 17:39:41 · 965 阅读 · 0 评论 -
探秘Flink Connector加载机制:连接外部世界的幕后引擎
《Flink Connector加载机制解析》深入剖析了Flink与外部系统交互的核心组件。文章首先阐释了Connector的定位与作用,作为数据交换接口组件,其加载机制直接影响作业运行稳定性。随后详细解析了加载流程的四个关键环节:基于Flink自定义类加载器的类加载体系、Java服务发现机制、工厂类初始化与配置解析,以及完整的生命周期管理。在扩展应用方面,介绍了自定义Connector开发流程、动态加载特性及典型应用场景。最后针对性能优化与常见问题提供了解决方案建议。该机制的高效设计为Flink构建稳定数原创 2025-06-22 17:37:05 · 746 阅读 · 0 评论 -
Flink SourceFunction深度解析:数据输入的起点与奥秘
Flink SourceFunction深度解析 SourceFunction是Flink数据处理的源头组件,作为连接外部数据源与计算框架的桥梁。文章从基础概念、核心接口、源码架构到实现示例,系统剖析了其工作原理: 功能定位:负责数据读取、转换与发送,支持连接管理和Checkpoint协同,确保数据处理的一致性和可靠性 核心接口: 基础接口提供run/cancel方法 RichSourceFunction扩展生命周期管理 特殊接口支持水印生成和并行读取 实现机制: 数据流通过SourceContext发送原创 2025-06-22 17:20:19 · 773 阅读 · 0 评论 -
Flink StreamGraph深度剖析:从核心对象到算子转换的全揭秘
摘要:本文深入剖析了Flink作业执行架构中的StreamGraph核心机制。首先介绍了StreamGraph作为初始计算图的角色,及其包含的StreamNode和StreamEdge等核心对象,详细解读了这些对象的关键属性配置。随后重点分析了StreamGraph的生成过程,指出其构建于Flink客户端,通过StreamExecutionEnvironment#getStreamGraph方法完成,最终由StreamGraphGenerator#generate()实现业务逻辑到执行图的转换。文章还特别强原创 2025-06-22 17:13:01 · 888 阅读 · 0 评论 -
Flink Sink函数深度解析:从原理到实践的全流程探索
Flink Sink函数是实现端到端数据处理的关键组件,负责将处理结果输出到外部存储系统。摘要:1)Sink函数作为数据处理终点,支持多路并行输出;2)二阶段提交协议保障数据一致性,结合检查点机制实现Exactly-Once语义;3)SinkFunction接口体系包含基础操作与事务管理功能,TwoPhaseCommitSinkFunction是实现精准一次的核心抽象;4)通过JdbcSink示例展示了实际实现逻辑,包括批量写入和状态管理;5)需结合业务需求设计Sink,确保分布式环境下数据可靠输出。理解S原创 2025-06-22 17:08:56 · 1025 阅读 · 0 评论 -
深入剖析Flink内存管理:架构、调优与实战指南
摘要:Apache Flink的内存管理机制是其高效稳定运行的关键,涉及TaskManager、JobManager和托管内存等核心组件,采用堆内存与堆外内存协同工作的架构。文章详细解析了Flink内存配置参数(如taskmanager.memory.process.size)及调优策略,针对实时日志分析和批量处理等典型场景提供具体配置建议。通过合理的内存分配、动态调整及问题诊断(如OutOfMemoryError),可显著提升作业性能与资源利用率。掌握Flink内存管理原理与优化技巧对构建高性能大数据系统原创 2025-06-22 17:01:33 · 722 阅读 · 0 评论 -
Flink作业三种部署模式:架构、配置与实战应用
Local模式是Flink最为简单直接的部署方式,它在单个JVM进程内模拟Flink集群的运行环境,所有的Flink组件,包括JobManager和TaskManager,都在同一进程中执行。这种模式无需依赖外部集群资源,非常适合开发者在本地进行代码的开发、调试以及小规模数据的测试工作。Standalone模式是Flink自带的分布式部署模式,它允许用户在一组独立的节点上搭建Flink集群,无需依赖其他资源管理框架。原创 2025-06-22 16:54:16 · 713 阅读 · 0 评论 -
Flink SQL Connector Kafka 核心参数全解析与实战指南
本文详细介绍了Flink SQL Kafka连接器的使用方法,涵盖环境配置、表定义、参数设置和实战场景。主要内容包括:1) Maven依赖和环境要求;2) Kafka表定义与元数据映射规则;3) 核心参数分类解析,包括连接配置、消费模式、数据格式和写入保证;4) 高级特性如动态主题发现、CDC支持和安全认证;5) 典型应用场景示例。通过本文,开发者可快速掌握构建实时数据管道的关键技术要点,实现Flink与Kafka的高效集成。原创 2025-06-22 16:49:11 · 1178 阅读 · 0 评论 -
Flink Connector Kafka深度剖析与进阶实践指南
在大数据实时处理的技术栈中,Flink和Kafka堪称黄金搭档。Flink以卓越的流处理能力和低延迟特性占据一席之地,Kafka则凭借高吞吐量与强大的可扩展性成为分布式消息队列的佼佼者。而Flink Connector Kafka作为连接二者的关键枢纽,承载着数据在Flink与Kafka之间高效传输与交互的重任。本文将对Flink Connector Kafka进行深度挖掘,从底层原理到复杂应用场景,全方位剖析其技术细节与实践要点。原创 2025-06-22 16:41:15 · 686 阅读 · 0 评论 -
Flink on YARN 部署
在大数据计算领域,Apache Flink凭借其高性能、流批统一的特性,成为实时数据处理的首选框架。而YARN作为Hadoop生态的资源调度平台,能够为Flink提供强大的资源管理能力。将Flink部署在YARN上,既能充分利用集群资源,又能实现作业的灵活调度。本文将深入讲解Flink on YARN的部署要点,结合实际操作和常见问题解决,帮助开发者快速掌握这一关键技术。原创 2025-06-16 09:41:03 · 902 阅读 · 0 评论 -
Flink与Kubernetes集成
Flink Standalone Kubernetes集成模式支持session和两种部署模式,而per-job模式目前仅在YARN环境中支持,并且在Flink 1.15版本中已在YARN环境下被弃用(具体可参考FLINK-26000相关内容)。本次重点研究非HA(高可用)部署模式,虽然在实际生产环境中,HA模式能够提供更高的可靠性和容错能力,但非HA模式与HA模式在核心原理和大部分配置上是相通的,HA模式的详细配置可参考官方文档进行深入学习。session和。原创 2025-06-15 18:19:07 · 929 阅读 · 0 评论