差分约束法

本文介绍了差分约束系统的概念,它是一组特定形式的不等式,可以转换为有向无环图进行求解。通过SPFA算法判断是否存在负环来确定解的存在性。差分约束在最短路径和最长路径问题中有广泛应用。文章提供了代码示例,并强调在实际问题中应注意完全列出所有不等关系。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

差分约束系统

首先,我们先介绍一下什么是差分约束系统。

定义:如果一个系统由 nnn 个变量和 mmm 个约束条件组成,形成 mmm 个形如ai−aj≤ka_i-a_j \leq kaiajk的不等式 。 i,j∈[1,n]i,j\in \left [ 1,n \right ]i,j[1,n]kkk为常数。

不绝对,若为ai−aj≥ka_i-a_j \geq kaiajk,即是最长路)

可以理解为:差分约束是求解关于一组变量的特殊不等式组的方法。(即: 线性规划问题

举个例子:

在样例中,如果我们把不等式等价成矩阵的形式,即:
[1−1001−110−1][x1x2x3]≤[3−21] \begin{bmatrix} 1& -1& 0 \\ 0& 1& -1 \\ 1& 0& -1 \end{bmatrix} \begin{bmatrix} x_1\\ x_2\\ x_3 \end{bmatrix} \leq \begin{bmatrix} 3\\ -2\\ 1 \end{bmatrix} 101110011x1x2x3321
关于上面这个不等式的解,可以是x=(5,3,5)x=\left( 5,3,5\right)x=(5,3,5),也可以是x=(0,−2,0)x=\left( 0,-2,0\right)x=(0,2,0)

观察两个解,不难看出:两解相差一个定值 5。

所以,我们可以得出一个结论:

x=(x1,x2,x3,...,xn)x=\left( x_1,x_2,x_3,...,x_n\right)x=(x1,x2,x3,...,xn)是不等式的一个解。设ddd为任意常数,则x+d=(x1+d,x2+d,x3+d,...,xn+d)x+d=\left( x_1+d,x_2+d,x_3+d,...,x_n+d\right)x+d=(x1+d,x2+d,x3+d,...,xn+d)也是该不等式的一个解。

说话讲道理,证明:

对于每一个xi,xjx_i,x_jxi,xj,我们有(xi+d)−(xj+d)=xi−xj\left(x_i+d\right)-\left(x_j+d\right)=x_i-x_j(xi+d)(xj+d)=xixj。因此若xxx满足不等式,x+dx+dx+d也满足。

(这也是这一题special judge的原因)

约束图

刚刚分析了差分约束系统。那这一问题和图论又有什么关系呢?

敏感的小伙伴在看到上面的矩阵时,应该就反应过来了。

这是一个有向无环图的关联矩阵

(即: 从减数指向被减数

再将边的权重赋值为不等式的常数kkk

最后构造一个点(起点),从其出发可以到达所有其他节点,权值赋为0。

即构成了差分约束系统的约束图。

求解

对于约束图,若图中不存在负环。则起点到每个边的最短路权值,即为差分约束系统的一个可行解。

若存在负环,则无解。

代码如下(SPFA判负环)

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
#define MAXN 500000
using namespace std;
int adj[MAXN],cnt=0,num[MAXN];
int dis[MAXN],ori=0,n,m;;
bool vis[MAXN];
queue < int > q;
struct EDGE
{
	int to,nxt,val;
}	e[MAXN];
void addedge(int u,int v,int w)
{
	e[++cnt].to=v; e[cnt].val=w; e[cnt].nxt=adj[u]; adj[u]=cnt;
}
bool SPFA()
{
	for(int i=1;i<=n;++i) dis[i]=(i==ori ? 0 : INF);
	q.push(ori); vis[ori]=1; ++num[ori];
	while(!q.empty())
	{
		int u=q.front(); q.pop(); vis[u]=0;
		for(int i=adj[u];i;i=e[i].nxt) 
		{
			int v=e[i].to;
			if(dis[v]>dis[u]+e[i].val) 
			{
				dis[v]=dis[u]+e[i].val;
				if(!vis[v])
				{
					vis[v]=1;q.push(v);
					++num[v];
					if(num[v]>n)	return 0;
				}

			}
		}
	}
	return 1;
}
int main()
{
	scanf("%d%d",&n,&m);
	for(int i=1;i<=n;++i) addedge(0,i,0);
	for(int i=1;i<=m;++i)
	{
		int u,v,w;	scanf("%d%d%d",&u,&v,&w);
		addedge(v,u,w);
	}
	if(SPFA())
		for(int i=1;i<=n;++i)	printf("%d ",dis[i]);
	else
		printf("NO");
	return 0;
}

补充:

差分约束在实际应用中很丰富。可以是最短路径,也可以是最长路径。

在实际问题中,要尽可能的把题目中个不等关系找全。(如:0≤x2−x1≤10 \leq x_2-x_1\leq 10x2x11,前半个容易丢)

参考资料:《算法导论》

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值