试题库 网络流24题(7/24)

本文介绍了一种基于最大流算法的组卷算法设计,用于从含有多种类别的试题库中抽取指定类型的试题,以组成满足特定条件的试卷。通过构建网络流模型,利用Dinic算法求解最大流,确保试卷中包含所有指定类型的试题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

试题库
题面: 假设一个试题库中有 n道试题。每道试题都标明了所属类别。同一道题可能有多个类别属性。现要从题库中抽取m道题组成试卷。并要求试卷包含指定类型的试题。试设计一个满足要求的组卷算法。
思路: 建模,跑一遍最大流即可

#include <bits/stdc++.h>
#define INF 0x3f3f3f3f
using namespace std;
const int N = 10005;
int n, m, ss, tt, k;
int dis[N];
int cur[N];
bool vis[N];
queue<int> q;
struct Edge {
    int to;
    int value;
    int next;
} e[N * 10];
int head[N], cnt = -1;
void add(int from, int to, int value) {
    cnt++;
    e[cnt].to = to;
    e[cnt].value = value;
    e[cnt].next = head[from];
    head[from] = cnt;
}

bool bfs(int s, int t) {
    q = queue<int>();
    memset(dis, -1, sizeof(dis));
    dis[s] = 0;
    q.push(s);
    while (!q.empty()) {
        int x = q.front();
        q.pop();
        for (int i = head[x]; i > -1; i = e[i].next) {
            int now = e[i].to;
            if (dis[now] == -1 && e[i].value != 0) {
                dis[now] = dis[x] + 1;
                q.push(now);
            }
        }
    }
    return dis[t] != -1;
}

int dfs(int x, int t, int maxflow) {
    if (x == t)
        return maxflow;
    int ans = 0;
    for (int i = cur[x]; i > -1; i = e[i].next) {
        int now = e[i].to;
        if (dis[now] != dis[x] + 1 || e[i].value == 0 || ans >= maxflow)
            continue;
        cur[x] = i;
        int f = dfs(now, t, min(e[i].value, maxflow - ans));
        e[i].value -= f;
        e[i ^ 1].value += f;
        ans += f;
    }
    return ans;
}
int Dinic(int s, int t) {
    int ans = 0;
    while (bfs(s, t)) {
        memcpy(cur, head, sizeof(head));
        ans += dfs(s, t, INF);
    }
    return ans;
}

int main() {

    memset(head, -1, sizeof(head));
    scanf("%d%d", &k,&n);
    ss=0,tt=n+k+1;
    int sum=0;
    for(int i=1;i<=k;i++)
    {
    	int x;
    	scanf("%d",&x);
    	sum+=x;
    	add(n+i,tt,x);
    	add(tt,n+i,0);
    }
    for(int i=1;i<=n;i++)
    {
	add(ss,i,1);
	add(i,ss,0);
    }
    for(int i=1;i<=n;i++)
    {
    	int x;
    	scanf("%d",&x);
    	for(int j=1;j<=x;j++)
	{
		int tmp;
		scanf("%d",&tmp);
		add(i,tmp+n,1);
		add(tmp+n,i,0);
	}
    }
    int ans=Dinic(ss,tt);

    if(sum!=ans)
    {
    	puts("No Solution!");
    	return 0;
    }
    for(int i=n+1;i<=n+k;i++)
    {
    	printf("%d:",i-n);
    	for(int j=head[i];j!=-1;j=e[j].next)
	{

		if(e[j].to!=tt&&e[j].value==1)
		{
			printf(" %d",e[j].to);
		}
	}
	puts("");
    }
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值