--------------------2020/12/17二刷--------------------------------
当把题目看成二分数组来处理的时候,就有很多种特殊情况,感觉还是算挺难的。
关键在于nums[m] == nums[j]
的时候,为什么j-=1
是可以的。
1.情况一 当旋转点小于j的时候,这时候j-=1不影响查找
2.情况二 当旋转点等于j的时候,这时候j-=1会导致丢失旋转点,此时证明nums[j] == nums[i]
即可,
以下是证明:
因为j为旋转点,nums[j]是数组中最小的数字,又因为j之前的数组是递增数组,且nums[j] = nums[m],所以可以知道m到i之间的数字都相等,所以nums[i]=nums[i+1]=…=nums[m] = nums[j];
class Solution {
public:
int minArray(vector<int>& numbers) {
int i = 0, j = numbers.size() - 1;
while (i < j) {
int m = (i + j) / 2;
if(numbers[m] > numbers[j])
i = m + 1;
else if(numbers[m] < numbers[j])
j = m;
else
j --;
}
return numbers[i];
}
};
还出现了一个很蠢的错误, 中间三个连续判断,没有用else if,这样会导致第一个if执行之后,还会执行else,果然不休息的话就会越做越蠢。
--------------------一刷--------------------------------
题目描述
把一个数组最开始的若干个元素搬到数组的末尾,我们称之为数组的旋转。输入一个递增排序的数组的一个旋转,输出旋转数组的最小元素。例如,数组 [3,4,5,1,2] 为 [1,2,3,4,5] 的一个旋转,该数组的最小值为1。
示例 1:
输入:[3,4,5,1,2]
输出:1
示例 2:
输入:[2,2,2,0,1]
输出:0
解法 遍历
一看到这个就想到找个断点,那就遍历就行了
class Solution {
public:
int minArray(vector<int>& numbers) {
for(int i=1;i<numbers.size();i++)
{
if(numbers[i]<numbers[i-1])
return numbers[i];
}
return numbers[0];
}
};
意识到事情并没有那么简单,就想着既然是递增的,又是找数字,还是O(logn)
肯定是二分法。
解法 二分法
class Solution {
public:
int minArray(vector<int>& numbers) {
int i=0,j=numbers.size()-1;
while(i<j)
{
int m=(i+j)/2;
if(numbers[m]>numbers[j])
{
i=m+1;
}
else if(numbers[m]<numbers[j])
{
j=m;
}
else j--;
}
return numbers[i];
}
};
看似简单细节其实挺多的。
1.当 nums[m] > nums[j]时,m在左排序数组 中,即旋转点 x 一定在 [m + 1, j]闭区间内,因此执行 i = m + 1;
2.当 nums[m] < nums[j]时,m 在右排序数组 中,即旋转点x 一定在[i,m] 闭区间内,因此执行 j = m;
3.当 nums[m] = nums[j]时,无法判断 m在哪个排序数组中,执行j=j−1 缩小判断范围
图解以及具体细节看见大佬的解释:link
时间O(logn) 空间O(n)