最短Hamilton路径

本文介绍了如何解决一个NPC问题——寻找带权无向图中起点0到终点n-1的最短Hamilton路径。通过dp和位运算优化算法,避免了全排列的高复杂度,给出了状态转移方程并附带了代码实现。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

也可以查看这里个人博客

给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。

输入格式
第一行输入整数n。

接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。

对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。

输出格式
输出一个整数,表示最短Hamilton路径的长度。

数据范围
1≤n≤20
0≤a[i,j]≤107
输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18

这是一个NPC问题,经典的哈密顿路径问题,如果我们暴力枚举每一种可能的话,就要对n个点进行全排列,那样的话复杂度就变成了O(n!)级别的了,这个复杂度是非常大的,我们需要用另一种思路去解决。
我们其实可以用dp+位运算来解决这个问题。
我们先定义dp[i][j]为在i这个状态下,以j为终点时的最短路径,i就是利用位运算来表示n个点是否被选,将i转成二进制从右往左依次为第0-n-1位,如果i的二进制的第p位上是i就代表p这个点被选中,那么我们就可以得到状态转移方程:

dp[i][j] = min(dp[i][j] , dp[i ^ (1 << j)][k] + g[k][j]

其中k是在i这个状态中被选中的点,k是需要枚举n次的,要从k这个点转移到j这个点,我们取最小值即可。

代码:

#include <cstring>
#include <iostream>
#include <algorithm>

using namespace std;

const int N = 30 , M = (1 << 20) + 10;

int n;
int g[N][N] , dp[M][N];

int main(void)
{
    cin >> n;
    
    memset(dp , 0x3f , sizeof dp);
    dp[1][0] = 0;//注意这个初始化,这里虽然是1,但是这代表的是第0个点被选中,因为此时i的第0号位上是1,代表被选中
    
    for(int i = 0 ; i < n ; ++ i)
        for(int j = 0 ; j < n ; ++ j)
            cin >> g[i][j];
            
    for(int i = 0 ; i < 1 << n ; ++ i)//枚举每一种状态
    {
        for(int j = 0 ; j < n ; ++ j)//枚举终点
        {
            if((i >> j) & 1)//如果这个状态包含这个终点
            {
                for(int k = 0 ; k < n ; ++ k)//枚举转移点
                {
                    if(k != j && (i >> k) & 1)//如果存在转移点
                    {
                        dp[i][j] = min(dp[i][j] , dp[i ^ (1 << j)][k] + g[k][j]);//状态转移
                    }
                }
            }
        }
    }
    
    cout << dp[(1 << n) - 1][n - 1] << endl;
    
    return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值