也可以查看这里个人博客
给定一张 n 个点的带权无向图,点从 0~n-1 标号,求起点 0 到终点 n-1 的最短Hamilton路径。 Hamilton路径的定义是从 0 到 n-1 不重不漏地经过每个点恰好一次。
输入格式
第一行输入整数n。
接下来n行每行n个整数,其中第i行第j个整数表示点i到j的距离(记为a[i,j])。
对于任意的x,y,z,数据保证 a[x,x]=0,a[x,y]=a[y,x] 并且 a[x,y]+a[y,z]>=a[x,z]。
输出格式
输出一个整数,表示最短Hamilton路径的长度。
数据范围
1≤n≤20
0≤a[i,j]≤107
输入样例:
5
0 2 4 5 1
2 0 6 5 3
4 6 0 8 3
5 5 8 0 5
1 3 3 5 0
输出样例:
18
这是一个NPC问题,经典的哈密顿路径问题,如果我们暴力枚举每一种可能的话,就要对n个点进行全排列,那样的话复杂度就变成了O(n!)级别的了,这个复杂度是非常大的,我们需要用另一种思路去解决。
我们其实可以用dp+位运算来解决这个问题。
我们先定义dp[i][j]为在i这个状态下,以j为终点时的最短路径,i就是利用位运算来表示n个点是否被选,将i转成二进制从右往左依次为第0-n-1位,如果i的二进制的第p位上是i就代表p这个点被选中,那么我们就可以得到状态转移方程:
dp[i][j] = min(dp[i][j] , dp[i ^ (1 << j)][k] + g[k][j]
其中k是在i这个状态中被选中的点,k是需要枚举n次的,要从k这个点转移到j这个点,我们取最小值即可。
代码:
#include <cstring>
#include <iostream>
#include <algorithm>
using namespace std;
const int N = 30 , M = (1 << 20) + 10;
int n;
int g[N][N] , dp[M][N];
int main(void)
{
cin >> n;
memset(dp , 0x3f , sizeof dp);
dp[1][0] = 0;//注意这个初始化,这里虽然是1,但是这代表的是第0个点被选中,因为此时i的第0号位上是1,代表被选中
for(int i = 0 ; i < n ; ++ i)
for(int j = 0 ; j < n ; ++ j)
cin >> g[i][j];
for(int i = 0 ; i < 1 << n ; ++ i)//枚举每一种状态
{
for(int j = 0 ; j < n ; ++ j)//枚举终点
{
if((i >> j) & 1)//如果这个状态包含这个终点
{
for(int k = 0 ; k < n ; ++ k)//枚举转移点
{
if(k != j && (i >> k) & 1)//如果存在转移点
{
dp[i][j] = min(dp[i][j] , dp[i ^ (1 << j)][k] + g[k][j]);//状态转移
}
}
}
}
}
cout << dp[(1 << n) - 1][n - 1] << endl;
return 0;
}