题目描述:最长递增子序列
给你一个整数数组 nums ,找到其中最长严格递增子序列的长度。
子序列是由数组派生而来的序列,删除(或不删除)数组中的元素而不改变其余元素的顺序。例如,[3,6,2,7] 是数组 [0,3,1,6,2,2,7] 的子序列。
题解:动态规划
设f(n)表示长度为n的数组序列中包含第n个数的最长递增子序列,那么f(n)的值为 f(n)=max(f(i)+1),满足nums[i]<nums[n]f(n) = max(f(i)+1),满足nums[i]<nums[n]f(n)=max(f(i)+1),满足nums[i]<nums[n]
于是,我们就可以得出从1-n的每个f(n)的值,从而取得其中最大的一个,作为结果
代码
class Solution {
public:
int f(vector<int>&nums,int n,vector<int>&res)
{
if(n==0)
{
return 1;
}
else
{
int a = 1;
for(int i = 0;i<n;++i)
{
if(nums[i]<nums[n])
{
a = max(res[i]+1,a);
}
}
return a;
}
}
int lengthOfLIS(vector<int>& nums) {
vector<int>res(nums.size());
int m = 0;
for(int i = 0;i<nums.size();++i)
{
res[i] = f(nums,i,res);
m = max(m,res[i]);
}
return m;
}
};