Java最长递增子序列的个数leetcode

这篇博客详细介绍了如何使用动态规划解决寻找未排序整数数组中最长递增子序列个数的问题。代码实现中,通过维护两个数组`f`和`g`,分别记录以每个元素结尾的最长递增子序列的长度和方案数,最终找到最长递增子序列的个数。算法执行速度快,在Java提交中击败了大部分用户。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个未排序的整数数组 nums , 返回最长递增子序列的个数 。

注意 这个数列必须是 严格 递增的。

class Solution {
    public int findNumberOfLIS(int[] nums) {
        int n = nums.length;
        int[] f = new int[n];
        int[] g = new int[n];
        //当前最长子串长度
        int max = 1;
        for(int i = 0;i < n;i++){
            f[i] = 1;
            g[i] = 1;
            for(int j = 0;j < i;j++){
                if(nums[j] < nums[i]){
                    if(f[i] < f[j] + 1){
                        f[i] = f[j] + 1;
                        g[i] = g[j];
                    }else if(f[i] == f[j] + 1){
                        //找到了一个新的符合条件的前驱,此时将值继续累加到方案数当中
                        g[i] += g[j];
                    }
                }
            }
            max = Math.max(max,f[i]);
        }
        int res = 0;
        for(int i = 0 ;i < n;i++){
            if(f[i] == max){
                res += g[i];
            }
        }
        return res;
    }
}

执行用时:18 ms, 在所有 Java 提交中击败了72.27%的用户

内存消耗:41 MB, 在所有 Java 提交中击败了42.85%的用户

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值