DEEPLEARNING.AI第二门第三周1-5笔记

本文探讨深度学习中神经网络超参数的调试技巧,包括如何系统地选择和优化超参数,以及Batch归一化如何简化参数搜索并加速训练过程。介绍了随机取值和由粗到细的搜索策略,以及如何为不同超参数选择合适的取值范围。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

3.1 调试处理

目前为止,我们已经了解到:神经网络的改变会涉及到许多不同超参数的设置。对于超参数而言,你要如何找到一套好的设定呢?在视频中,老师分享了一些指导原则,还有一些关于如何系统地组织超参调试过程的技巧,希望这些能够帮你更有效地完成合适的超参设定。
在这里插入图片描述
关于训练深度最难的事情之一是要处理的参数的数量非常多,从学习速率α\alphaα到Momentum(动量梯度下降法)的参数β\betaβ。如果使用Momentum或Adam优化算法的参数,β1\beta_1β1β2\beta_2β2ξ\xiξ,也许你还得选择层数。可能你还想选择不同层中隐藏单元的数量,或者想使用学习率衰减。所以,你使用的并不是单一的学习率α\alphaα。当然你可能还需要选择mini-batch的大小。
一些实践结论证实,一些超参数比其它的更为重要。他认为,最为广泛的学习应用是α\alphaα,学习速率α\alphaα是需要调试的最重要的超参数。
除了α\alphaα,还有一些参数需要调试,例如Momentum参数β\betaβ,0.9就是个很好的默认值。接着还会调试mini-batch的大小,以确保最优算法运行有效。经常调试隐藏单元,比如橙色的那一些,这三个是我觉得其次比较重要的,相对于α\alphaα而言。重要性排第三位的是其他因素,层数有时会产生很大的影响,学习率衰减也是如此。当应用Adam算法时,事实上,老师说他从不调试β1\beta_1β1β2\beta_2β2ξ\xiξ,只是总是选定其分别为0.9,0.999和10−810^{-8}108,如果你想的话也可以调试它们。
但粗略了解到哪些超参数较为重要,无疑是最重要的,α\alphaα无疑是老师认为最重要的,接下来就是橙色和紫色的。但这不是严格且快速的标准,我认为,其它深度学习的研究者可能会很不同意我的观点或有着不同的直觉。

现在,如果你要尝试调整一些超参数,该如何选择调试值呢?在早一代的机器学习算法中,如果你有两个超参数,称之为超参1,超参2,常见的做法是在网格中取样点,像下图左边所示,然后系统的研究这些数值。这里放置的是5×5的网格,实践证明,网格可以是5×5,也可多可少,但对于这个例子,你可以尝试这所有的25个点,然后选择哪个参数效果最好。当参数的数量相对较少时,这个方法很实用。

在深度学习领域,我们常做的,是下面的做法,随机选择点,可以选择同等25个点,接着,用这些随机取的点试验超参数的效果。(下图右边)
在这里插入图片描述
之所以这么做是因为,对于你要解决的问题而言,你很难提前知道哪个超参数最重要,正如你之前看到的,一些超参数的确要比其它的更重要。
举个例子,假设超参数1是(学习速率)α\alphaα,再取一个极端的假设,假设超参数2是Adam算法分母中的ξ\xiξ。在这种情况下,α\alphaα的取值很重要,而ξ\xiξ取值则无关紧要。如果你在网格中像左边一样取点,接着试验了5个取值,那你会发现,无论取何值,结果基本上都是一样的。所以,你知道共有25种模型,但进行试验的值只有5个,我认为这是很重要的。
对比而言,如果你随机取值,你会试验25个独立的,似乎你更有可能发现效果最好的那个。

我已经解释了两个参数的情况,实践中,你搜索的超参数可能不止两个。假如,你有三个超参数,这时你搜索的不是一个方格,而是一个立方体,超参数3代表第三维,接着,在三维立方体中取值,你会试验大量的更多的值,三个超参数中每个都是。
实践中,你搜索的可能不止三个超参数有时很难预知,哪个是最重要的超参数,对于你的具体应用而言,随机取值而不是网格取值表明,你探究了更多重要超参数的潜在值,无论结果是什么。

当你给超参数取值时,另一个惯例是采用由粗糙到精细的策略。
在这里插入图片描述
比如在二维的那个例子中,你进行了取值,也许你会发现效果最好的某个点,也许这个点周围的其他一些点效果也很好,那在接下来要做的是放大这块小区域(小蓝色方框内),然后在其中更密集得取值或随机取值,聚集更多的资源,在这个蓝色的方格中搜索,如果你怀疑这些超参数在这个区域的最优结果,那在整个的方格中进行粗略搜索后,你会知道接下来应该聚焦到更小的方格中。在更小的方格中,你可以更密集得取点。所以这种从粗到细的搜索也经常使用。

通过试验超参数的不同取值,你可以选择对训练集目标而言的最优值,或对于开发集而言的最优值,或在超参搜索过程中你最想优化的东西。
这能给你提供一种方法去系统地组织超参数搜索过程。另一个关键点是随机取值和精确搜索,考虑使用由粗糙到精细的搜索过程。但超参数的搜索内容还不止这些。

3.2 为超参数选择合适的范围

在超参数范围中,随机取值可以提升你的搜索效率。但随机取值并不是在有效范围内的随机均匀取值,而是选择合适的标尺,用于探究这些超参数,这很重要。
在这里插入图片描述
假设你要选取隐藏单元的数量 n[l]\ n^{[l]} n[l],选取的取值范围是从50到100中某点,这种情况下,看到这条从50-100的数轴,你可以随机在其取点,这是一个搜索特定超参数的很直观的方式。或者,如果你要选取神经网络的层数,你也许会选择层数为2到4中的某个值,接着顺着2,3,4随机均匀取样才比较合理,你还可以应用网格搜索,你会觉得2,3,4,这三个数值是合理的,这是在几个在你考虑范围内随机均匀取值的例子,这些取值还蛮合理的,但对某些超参数而言却不适用。
在这里插入图片描述
看看这个例子,假设你在搜索超参数(学习速率α\alphaα,怀疑其值最小是0.0001或最大是1。如果你画一条从0.0001到1的数轴,沿其随机均匀取值,那90%的数值将会落在0.1到1之间,结果就是,在0.1到1之间,应用了90%的资源,而在0.0001到0.1之间,只有10%的搜索资源,这看上去不太对。
反而,用对数标尺搜索超参数的方式会更合理,因此这里不使用线性轴,分别依次取0.0001,0.001,0.01,0.1,1,在对数轴上均匀随机取点,这样,在0.0001到0.001之间,就会有更多的搜索资源可用。
在这里插入图片描述
更常见的情况是,如果你在10a10^a10a10b10^b10b之间取值,你可以通过0.0001算出a的值,即-4,在右边的值是10b10^b10b,你可以算出b的值,即0。你要做的就是在区间随机均匀地给取值。在这个例子中,然后你可以设置的值,基于随机取样的超参数。
在这里插入图片描述

所以总结一下,在对数坐标下取值,取最小值的对数就得到a的值,取最大值的对数就得到b值,所以现在你在对数轴上的10a10^a10a10b10^b10b区间取值,在a,b间随意均匀的选取r值,将超参数设置为10r10^r10r,这就是在对数轴上取值的过程。

最后,另一个棘手的例子是给β\betaβ取值,用于计算指数的加权平均值。假设你认为β\betaβ是0.9到0.999之间的某个值,也许这就是你想搜索的范围。记住这一点,当计算指数的加权平均值时,取0.9就像在10个值中计算平均值,有点类似于计算10天的温度平均值,而取0.999就是在1000个值中取平均。
在这里插入图片描述
所以和上张幻灯片上的内容类似,如果你想在0.9到0.999区间搜索,那就不能用线性轴取值,对吧?不要随机均匀在此区间取值,所以考虑这个问题最好的方法就是,我们要探究的是1−β1-\beta1β,此值在0.1到0.001区间内,所以我们会给1−β1-\beta1β取值,大概是从0.1到0.001,值得注意的是,在之前的幻灯片里,我们把最小值写在左边,最大值写在右边,但在这里,我们颠倒了大小。这里,左边的是最大值,右边的是最小值。所以你要做的就是在[−3,−1][-3,-1][3,1]里随机均匀的给r取值。你设定了1−β=10r1-\beta=10^r1β=10r,所以就变成了在特定的选择范围内超参数随机取值。所以你在0.9到0.99区间探究的资源,和在0.99到0.999区间探究的一样多。

希望能帮助你选择合适的标尺,来给超参数取值。如果你没有在超参数选择中作出正确的标尺决定,别担心,即使你在均匀的标尺上取值,如果数值总量较多的话,你也会得到还不错的结果,尤其是应用从粗到细的搜索方法,在之后的迭代中,你还是会聚焦到有用的超参数取值范围上。

3.3 超参数调试的实践:Pandas VS Caviar

在这里插入图片描述
关于如何搜索超参数的问题,大概有两种重要的思想流派或人们通常采用的方式。一种是你照看一个模型,通常是有庞大的数据组,但没有许多计算资源或足够的CPU和GPU的前提下,基本而言,你只可以一次负担起试验一个模型或一小批模型,在这种情况下,即使当它在试验时,你也可以逐渐改良。比如,第0天,你将随机参数初始化,然后开始试验,然后你逐渐观察自己的学习曲线,也许是损失函数J,或者数据设置误差或其它的东西,在第1天内逐渐减少,那这一天末的时候,你可能会说,看,它学习得真不错。我试着增加一点学习速率,看看它会怎样,也许结果证明它做得更好,那是你第二天的表现。两天后,你会说,它依旧做得不错,也许我现在可以填充下Momentum或减少变量。然后进入第三天,每天,你都会观察它,不断调整你的参数。也许有一天,你会发现你的学习率太大了,所以你可能又回归之前的模型,像这样,但你可以说是在每天花时间照看此模型,即使是它在许多天或许多星期的试验过程中。所以这是一个人们照料一个模型的方法,观察它的表现,耐心地调试学习率,但那通常是因为你没有足够的计算能力,不能在同一时间试验大量模型时才采取的办法。
在这里插入图片描述
另一种方法则是同时试验多种模型,你设置了一些超参数,尽管让它自己运行,或者是一天甚至多天,然后你会获得像这样的学习曲线,这可以是损失函数J或实验误差或损失或数据误差的损失,但都是你曲线轨迹的度量。同时你可以开始一个有着不同超参数设定的不同模型,所以,你的第二个模型会生成一个不同的学习曲线,也许是像这样的一条(紫色曲线),我会说这条看起来更好些。与此同时,你可以试验第三种模型,其可能产生一条像这样的学习曲线(红色曲线),还有另一条(绿色曲线),也许这条有所偏离,像这样,等等。或者你可以同时平行试验许多不同的模型,橙色的线就是不同的模型。用这种方式你可以试验许多不同的参数设定,然后只是最后快速选择工作效果最好的那个。在这个例子中,也许这条看起来是最好的(下方绿色曲线)。
在这里插入图片描述
打个比方,把左边的方法称为熊猫方式。当熊猫有了孩子,他们的孩子非常少,一次通常只有一个,然后他们花费很多精力抚养熊猫宝宝以确保其能成活,所以,这的确是一种照料,一种模型类似于一只熊猫宝宝。对比而言,右边的方式更像鱼类的行为,我称之为鱼子酱方式。在交配季节,有些鱼类会产下一亿颗卵,但鱼类繁殖的方式是,它们会产生很多卵,但不对其中任何一个多加照料,只是希望其中一个,或其中一群,能够表现出色。我猜,这就是哺乳动物繁衍和鱼类,很多爬虫类动物繁衍的区别。我将称之为熊猫方式与鱼子酱方式,因为这很有趣,更容易记住。
所以这两种方式的选择,是由你拥有的计算资源决定的,如果你拥有足够的计算机去平行试验许多模型,那绝对采用鱼子酱方式,尝试许多不同的超参数,看效果怎么样。但在一些应用领域,比如在线广告设置和计算机视觉应用领域,那里的数据太多了,你需要试验大量的模型,所以同时试验大量的模型是很困难的,它的确是依赖于应用的过程。但如果看到那些应用熊猫方式多一些的组织,那里,你会像对婴儿一样照看一个模型,调试参数,试着让它工作运转。尽管甚至是在熊猫方式中,试验一个模型,观察它工作与否,也许第二或第三个星期后,也许应该建立一个不同的模型(绿色曲线),像熊猫那样照料它,这样一生中或许可以多培育几个孩子,即使它们一次只有一个孩子或孩子的数量很少。

3.4 归一化网络的激活函数

在深度学习兴起后,最重要的一个思想是它的一种算法,叫做Batch归一化,由Sergey loffe和Christian Szegedy两位研究者创造。Batch归一化会使你的参数搜索问题变得很容易,使神经网络对超参数的选择更加稳定,超参数的范围会更加庞大,工作效果也很好,也会是你的训练更加容易,甚至是深层网络。让我们来看看Batch归一化是怎么起作用的吧。

当训练一个模型,比如logistic回归时,你也许会记得,归一化输入特征可以加快学习过程。你计算了平均值,从训练集中减去平均值,计算了方差,接着根据方差归一化你的数据集,在之前的视频中我们看到,这是如何把学习问题的轮廓,从很长的东西,变成更圆的东西,更易于算法优化。所以对于logistic回归和神经网络的归一化输入特征值而言,这是很有效的。

那么更深的模型呢?
在这里插入图片描述
所以问题来了,对任何一个隐藏层而言,我们能否归一化a值,在此例中,比如说a[2]a^{[2]}a[2]的值,简单来说,这就是Batch归一化的作用。尽管严格来说,我们真正归一化的不是a[2]a^{[2]}a[2],而是z[2]z^{[2]}z[2],深度学习文献中有一些争论,关于在激活函数之前是否应该将z[2]z^{[2]}z[2]值归一化,或是否应该在应用激活函数a[2]a^{[2]}a[2]后再规范值。实践中,经常做的是归一化z[2]z^{[2]}z[2],所以这就是课程介绍的版本,那下面就是Batch归一化的使用方法。
在这里插入图片描述
在神经网络中,已知一些中间值,假设你有一些隐藏单元值,你要计算平均值,强调一下,所有这些都是针对l层,但我省略l及方括号,然后用正如你常用的那个公式计算方差,接着,你会取每个z[i]z^{[i]}z[i]值,使其规范化,方法如下,减去均值再除以标准偏差,为了使数值稳定,通常将作为分母,以防σ=0\sigma=0σ=0的情况。
现在我们已把这些z值标准化,化为含平均值0和标准单位方差,z每一个分量都含有平均值0和方差1,但我们不想让隐藏单元总是含有平均值0和方差1,也许隐藏单元有了不同的分布会有意义,我们所要做的就是计算,
在这里插入图片描述
这里和是你模型的学习参数,所以我们使用梯度下降或一些其它类似梯度下降的算法,比如Momentum或者Nesterov,Adam,你会更新γ\gammaγβ\betaβ,如同更新神经网络的权重一样。
通过对γ\gammaγβ\betaβ合理设定,规范化过程,即这四个等式,从根本来说,只是计算恒等函数,通过赋予和其它值,可以使你构造含其它平均值和方差的隐藏单元值。
在这里插入图片描述
归一化输入特征X是怎样有助于神经网络中的学习,Batch归一化的作用是它适用的归一化过程,不只是输入层,甚至同样适用于神经网络中的深度隐藏层。你应用Batch归一化了一些隐藏单元值中的平均值和方差,不过训练输入和这些隐藏单元值的一个区别是,你也许不想隐藏单元值必须是平均值0和方差1。
比如,如果你有sigmoid激活函数,你不想让你的值总是全部集中在这里,你想使它们有更大的方差,或不是0的平均值,以便更好的利用非线性的sigmoid函数,而不是使所有的值都集中于这个线性版本中,这就是为什么有了和两个参数后,你可以确保所有的值可以是你想赋予的任意值,或者它的作用是保证隐藏的单元已使均值和方差标准化,学习算法可以设置为任何值。所以它真正的作用是,使隐藏单元值的均值和方差标准化,即有固定的均值和方差,均值和方差可以是0和1,也可以是其它值,它是由γ\gammaγβ\betaβ两参数控制的。

3.5 将 Batch Norm 拟合进神经网络(Fitting Batch Norm into a neural network)

在这里插入图片描述
假设你有一个这样的神经网络。第一,它先计算z,然后应用其到激活函数中再计算a,可以认为,每个圆圈代表着两步的计算过程。所以如果你没有应用Batch归一化,你会把输入X拟合到第一隐藏层,然后首先计算z[1]z^{[1]}z[1],这是由w[1]w^{[1]}w[1]b[1]b^{[1]}b[1]两个参数控制的。接着,通常而言,你会把z[1]z^{[1]}z[1]拟合到激活函数以计算a[1]a^{[1]}a[1]。但Batch归一化的做法是将z[1]z^{[1]}z[1]值进行Batch归一化,简称BN,此过程将由和两参数控制,这一操作会给你一个新的规范化的z[1]z^{[1]}z[1]值,然后将其输入激活函数中得到a[1]a^{[1]}a[1]
现在,你已在第一层进行了计算,此时Batch归一化发生在z的计算和a之间,接下来,你需要应用a[1]a^{[1]}a[1]值来计算z[2]z^{[2]}z[2],此过程是由w[2]w^{[2]}w[2]b[2]b^{[2]}b[2]控制的。与你在第一层所做的类似,你会将z[2]z^{[2]}z[2]进行Batch归一化,现在我们简称BN,这是由下一层的Batch归一化参数所管制的,即γ[2]\gamma^{[2]}γ[2]β[2]\beta^{[2]}β[2],现在你得到z^[2]\hat{z}^{[2]}z^[2],再通过激活函数计算出a[2]a^{[2]}a[2]等等。
所以需要强调的是Batch归一化是发生在计算和之间的。直觉就是,与其应用没有归一化的z[1]z^{[1]}z[1]值,不如用归一过的z^[1]\hat{z}^{[1]}z^[1],这是第一层。第二层同理。现在我们产生了新的参数网络:
在这里插入图片描述
所以现在,这是你算法的新参数,接下来你可以使用想用的任何一种优化算法,比如使用梯度下降法来执行它。
计算均值和方差,减去均值,再除以方差,如果它们使用的是深度学习编程框架,通常你不必自己把Batch归一化步骤应用于Batch归一化层,这就是Batch归一化的操作。可写成一行代码,比如说,在TensorFlow框架中,你可以用这个函数tf.nn.batch_normalization来实现Batch归一化。

实践中,Batch归一化通常和训练集的mini-batch一起使用。你应用Batch归一化的方式就是,你用第一个mini-batch(X[1]X^{[1]}X[1]),然后计算z[1]z^{[1]}z[1],这和上张幻灯片上我们所做的一样,应用参数w[1]w^{[1]}w[1]b[1]b^{[1]}b[1],使用mini-batch。接着,继续第二个mini-batch(X[1]X^{[1]}X[1]),接着Batch归一化会减去均值,除以标准差,重新缩放,这样就得到了z^[1]\hat{z}^{[1]}z^[1],而所有的这些都是在第一个mini-batch的基础上,你再应用激活函数得到a[1]a^{[1]}a[1]。然后用w[1]w^{[1]}w[1]b[1]b^{[1]}b[1]计算……所以你做的这一切都是为了在第一个mini-batch(X[1]X^{[1]}X[1])上进行一步梯度下降法。
在这里插入图片描述
类似的第二个第三个是相同的操作,但Batch归一化做的是,它要看这个mini-batch,先将z[l]z^{[l]}z[l]归一化,结果为均值0和标准方差,再重缩放,但这意味着,无论的b[l]b^{[l]}b[l]值是多少,都是要被减去的,因为在Batch归一化的过程中,你要计算的z[l]z^{[l]}z[l]均值,再减去平均值,在此例中的mini-batch中增加任何常数,数值都不会改变,因为加上的任何常数都将会被均值减去所抵消。
所以,如果你在使用Batch归一化,其实你可以消除这个参数,或者你也可以暂时把它设置为0。
在这里插入图片描述
如果你已将梯度计算如下,你就可以使用梯度下降法了,但也适用于有Momentum、RMSprop、Adam的梯度下降法。与其使用梯度下降法更新mini-batch,你可以使用这些其它算法来更新,也可以应用其它的一些优化算法来更新由Batch归一化添加到算法中的β\betaβγ\gammaγ 参数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值