1️⃣ 介绍
基于DFT的信道估计技术能够提高LS或MMSE信道估计的性能,通过消除最大信道时延以外的噪声来实现性能的提高。
2️⃣ 原理描述
令 H ^ L S [ k ] \hat{H}_{LS}[k] H^LS[k]表示由LS信道估计方法得到的第 k k k个子载波的信道频率响应,k的取值范围是从0到 N − 1 N-1 N−1。对 H ^ L S [ k ] \hat{H}_{LS}[k] H^LS[k]取N点IDFT:
IDFT { H ^ L S [ k ] } = h ^ L S [ n ] = h [ n ] + z [ n ] , n = 0 , 1 , ⋯ , N − 1 \operatorname{IDFT}\{\hat{H}_{LS}[k]\}=\hat{h}_{LS}[n]= h[n]+z[n], \quad n=0,1, \cdots, N-1 IDFT{ H^LS[k]}=h^LS[n]=h[n]+z[n],n=0,1,⋯,N−1
其中, z [ n ] z[n] z[n] 表示时域噪声。
无线信道通常具有时延扩展,也就是信号从发送端到接收端的传播会经历多个时间延迟。有效的信道响应大多数集中在一定的时延范围内,通常是前 L L L个时刻的信道系数。这些有效的时延部分对信号的传播和接收有重要影响,而其他更大的时延部分(即 n ≥ L n \geq L n≥L )通常对信号的传播影响较小或无影响。
对于最大的信道时延 L L L ,忽略 n ≥ L n \geq L n≥L部分的信道系数,此时信道系数 h ^ D F T [ n ] \hat{h}_{\mathrm{DFT}}[n] h^DFT[n]表示为:
h ^ D F T [ n ] = { h [ n ] + z [ n ] , n = 0 , 1 , 2 , ⋯ , L − 1 0 , 其他 \hat{h}_{\mathrm{DFT}}[n]= \begin{cases}h[n]+z[n], & n=0,1,2, \cdots, L-1 \\ 0, & \text { 其他 }\end{cases} h^DFT[n]={ h[n]+