Vitis HLS 2021.2 Windows OpenCV环境配置

步骤一 软件下载

opencv-4.4下载链接: opencv-4.4
MinGW下载链接: MinGW
CMake下载链接: CMake

步骤二 编译OpenCV库

编译好的库

这里有我已经编译好的库,可以直接下载使用。
链接: Mingw编译好的Opencv4.4.0库

编译库

  1. 解压MinGW软件,注意是posix seh版本;
  2. 添加环境变量,在PATH下添加D:\VitisLib\mingw64\bin;
  3. 使环境变量生效;
打开命令提示符 CMD,运行 set PATH=C:,更改当前窗口任务的环境变量,关闭这个 CMD。 
再次打开另一个 CMD,运行 echo %PATH%,显示最新的环境变量,会发现刚刚添加的 MinGW 环境变量已经生效。
  1. 解压CMake软件;

  2. 打开cmake-gui.exe,点击Browse Source选择你解压出来的OpenCV Source目录,点击Browse Build选择一个目录用来存放生成的工程文件(自己创建一个目录)
    在这里插入图片描述

  3. 点击配置;
    在这里插入图片描述
    在这里插入图片描述

勾选 WITH_OPENGL
勾选 ENABLE_CXX11

不勾选 WITH_IPP
不勾选 ENABLE_PRECOMPILED_HEADERS
不勾选 OPENCV_ENABLE_ALLOCATOR_STATS
  1. 再次点击配置,全部变白,点击生成;
  2. 打开CMD,进入buld目录;
mingw32-make  -j12 

在这里插入图片描述

mingw32-make install

步骤三 添加环境变量。

LD_LIBRARY_PATH  D:\VitisLib\opencv\install\x64\mingw\lib
OPENCV_INCLUDE   D:\VitisLib\opencv\install\include
OPENCV_LIB       D:\VitisLib\opencv\install\x64\mingw\lib
Path             D:\VitisLib\opencv\install\x64\mingw\lib;D:\VitisLib\opencv\install\x64\mingw\bin;

参考

Vitis HLS OpenCV库编译

内容概要:本文详细比较了GPU、TPU专用AI芯片在大模型推理优化方面的性能、成本及适用场景。GPU以其强大的并行计算能力和高带宽显存,适用于多种类型的神经网络模型和计算任务,尤其适合快速原型开发和边缘计算设备。TPU专为机器学习设计,擅长处理大规模矩阵运算密集型任务,如Transformer模型的推理,具有高吞吐量和低延迟特性,适用于自然语言处理和大规模数据中心的推理任务。专用AI芯片通过高度定制化架构,针对特定神经网络模型进行优化,如卷积神经网络(CNN),在处理特定任务时表现出色,同时具备低功耗和高能效比的优势,适用于边缘计算设备。文章还介绍了各自的优化工具和框架,如CUDA、TensorRT、TPU编译器等,并从硬件成本、运营成本和开发成本三个角度进行了成本对比。 适合人群:从事人工智能、深度学习领域的研究人员和技术人员,尤其是对大模型推理优化感兴趣的读者。 使用场景及目标:①帮助读者理解GPU、TPU和专用AI芯片在大模型推理中的优缺点;②为选择适合的硬件平台提供参考依据,以实现最优的推理性能和成本效益;③介绍各种优化工具和框架,帮助开发者高效部署和优化模型。 其他说明:本文不仅涵盖了硬件架构特性,还深入探讨了优化技术和应用场景,旨在为读者提供全面的技术参考。在选择硬件平台时,需综合考虑具体任务需求、预算限制及开发资源等因素。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值