STM32G4 Park及反Park变换(一)matlab建模

一、STM32G4 Park及反Park变换(一)matlab建模

1 Park及反Park变换

在STM32G4的电机控制应用中,Park变换和反Park变换是磁场定向控制(FOC)算法的关键环节。以下是对它们的简单介绍:

  • Park变换
    • 定义与原理:Park变换是将两相静止坐标系(αβ)转换为两相旋转坐标系(dq)的数学运算。其本质是通过乘以一个旋转矩阵,将静止坐标系上的交流量转换为旋转坐标系上的直流量。公式为
      { d = α ∗ cos ⁡ θ + β ∗ sin ⁡ θ q = − α ∗ sin ⁡ θ + β ∗ cos ⁡ θ \begin{cases}d = \alpha * \cos\theta+\beta * \sin\theta\\q = -\alpha * \sin\theta+\beta * \cos\theta\end{cases} {d=αcosθ+βsinθq=αsinθ+βcosθ
      其中 θ \theta θ为电机的电角度。
    • 作用:通过Park变换,可将定子电流中的励磁分量和转矩分量解耦,便于分别对其进行控制,从而实现对电机的精确控制。
    • 在STM32G4中的实现:STM32G4的电机控制库中,通常有专门的函数来执行Park变换,如MCM_Park函数,该函数将IalphaIbeta转换为IqId,变换过程中会用到电机电角度Theta
  • 反Park变换
    • 定义与原理:反Park变换是Park变换的逆过程,即将两相旋转坐标系(dq)转换回两相静止坐标系(αβ)。其公式为 { α = d ∗ cos ⁡ θ − q ∗ sin ⁡ θ β = d ∗ sin ⁡ θ + q ∗ cos ⁡ θ \begin{cases}\alpha = d * \cos\theta - q * \sin\theta\\\beta = d * \sin\theta+q * \cos\theta\end{cases} {α=dcosθqsinθβ=dsinθ+qcosθ
    • 作用:反Park变换的作用是将经过PI控制器调节后的VqVd转换回静止坐标系下的ValphaVbeta,以便后续通过SVPWM等算法生成驱动电机的三相电压。
    • 在STM32G4中的实现:在STM32G4的电机控制库中,MCM_Rev_Park函数用于执行反Park变换,将VqVd转换回ValphaVbeta,完成整个电流控制的闭环。
1.1 Park 变换原理
  • 电流环闭环构建的下一步:使用Park变化把Iα,Iβ转化为Id和Iq
    在这里插入图片描述
1.2 Park和反Park变换建模
  1. 打开Simulink,在之前Clark变换的基础上增加Park和反Park变换模块
    在这里插入图片描述

  2. 根据Park变换公式,搭建Park变换模型
    在这里插入图片描述

  3. 根据AntiPark变换公式,搭建AntiPark变换模型;
    在这里插入图片描述

  4. 增加theta 角度生成模块;与Clark角度保持同步;
    在这里插入图片描述

  5. 将 ialpha,ibeta,id和 iq 配置成全局 Simulink signal,便于程序代码观测;(具体方法详见上一个文章)
    在这里插入图片描述

  6. 点击仿真,观察波形
    在这里插入图片描述
    在这里插入图片描述
    在这里插入图片描述

附学习参考网址

  1. STM32G4 FOC开发实战
  2. 03、park、clarke变换案例_哔哩哔哩_bilibili

欢迎大家有问题评论交流 (* ^ ω ^)

### MATLABSTM32 仿真的方法与教程 #### 1. 联合仿真平台概述 MATLABSTM32 的联合仿真是种高效的开发方式,它允许开发者在实际硬件部署前完成系统的功能验证和性能优化。这种仿真依赖于 MATLAB/Simulink 提供的强大建模能力和 STM32CubeMX 工具链的支持[^2]。 #### 2. 技术准备 为了实现 MATLABSTM32 的联合仿真,需先完成以下准备工作: - **软件安装**:确保已安装最新版本的 MATLAB(推荐 2022b 及以上),以及 STM32CubeMX 和 STM32CubeIDE。 - **硬件支持包**:在 MATLAB 中安装 STM32 硬件支持包,以便 Simulink 模型可以直接生成适用于 STM32 微控制器的代码。 #### 3. 创建 Simulink 模型 Simulink 是 MATLAB 的核心组件之,用于构建动态系统模型。以下是创建适合 STM32 的 Simulink 模型的关键步骤: - 打开 Simulink 并新建个空白模型。 - 添加必要的模块库,例如 `STM32 Coder` 库中的 GPIO、定时器和其他外设接口模块。 - 设计控制逻辑或信号处理算法,例如 PID 控制器或 SVPWM 波形生成器[^1]。 #### 4. 配置 STM32 初始化代码 利用 STM32CubeMX 对目标 MCU 进行初步配置: - 选择具体的 STM32 型号,并设置时钟树、GPIO 引脚分配以及其他外设参数。 - 导出初始化代码至指定路径,该代码稍后会被导入到 Simulink 模型中[^2]。 #### 5. 关联 Simulink 模型与 STM32 初始代码 将由 STM32CubeMX 生产的初始化代码加载到 Simulink 模型中: - 使用 Embedded Coder 支持包提供的工具链,将两者绑定在起。 - 设置通信协议(如 UART 或 SPI)以实现实时数据交换[^4]。 #### 6. 编译与调试 完成上述操作后即可进入编译阶段: - 将最终生成的目标代码上传到 STM32 开发板上运行。 - 同时开启 MATLAB 实时监控窗口观察变量变化趋势并调整相应参数直至达到预期效果[^4]。 #### 7. 示例应用——FOC MATLAB 仿真 针对特定应用场景比如无刷直流电机矢量控制系统 (Field-Oriented Control),可以通过如下途径实施其完整的 MATLAB/STM32 协同工作流: - 构造 Clark/Park 变换矩阵及其逆运算部分来获取 dq轴电流馈值; - 结合 PI调节环节形成闭环速度伺服机制; - 输出 PWM驱动脉冲序列给功率级电路驱动MOSFET开关动作从而精确调控转矩输出特性等等[^3]。 ```python # 下面是个简单的 Python 版本 PID 控制器模拟例子 def pid_controller(Kp, Ki, Kd, target_value, current_value): error = target_value - current_value P_term = Kp * error integral += error I_term = Ki * integral derivative = error - last_error D_term = Kd * derivative output = P_term + I_term + D_term last_error = error return output ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值