目录
一、STM32G4 Park及反Park变换(一)matlab建模
1 Park及反Park变换
在STM32G4的电机控制应用中,Park变换和反Park变换是磁场定向控制(FOC)算法的关键环节。以下是对它们的简单介绍:
- Park变换
- 定义与原理:Park变换是将两相静止坐标系(αβ)转换为两相旋转坐标系(dq)的数学运算。其本质是通过乘以一个旋转矩阵,将静止坐标系上的交流量转换为旋转坐标系上的直流量。公式为
{ d = α ∗ cos θ + β ∗ sin θ q = − α ∗ sin θ + β ∗ cos θ \begin{cases}d = \alpha * \cos\theta+\beta * \sin\theta\\q = -\alpha * \sin\theta+\beta * \cos\theta\end{cases} {d=α∗cosθ+β∗sinθq=−α∗sinθ+β∗cosθ
其中 θ \theta θ为电机的电角度。 - 作用:通过Park变换,可将定子电流中的励磁分量和转矩分量解耦,便于分别对其进行控制,从而实现对电机的精确控制。
- 在STM32G4中的实现:STM32G4的电机控制库中,通常有专门的函数来执行Park变换,如
MCM_Park
函数,该函数将Ialpha
和Ibeta
转换为Iq
和Id
,变换过程中会用到电机电角度Theta
。
- 定义与原理:Park变换是将两相静止坐标系(αβ)转换为两相旋转坐标系(dq)的数学运算。其本质是通过乘以一个旋转矩阵,将静止坐标系上的交流量转换为旋转坐标系上的直流量。公式为
- 反Park变换
- 定义与原理:反Park变换是Park变换的逆过程,即将两相旋转坐标系(dq)转换回两相静止坐标系(αβ)。其公式为 { α = d ∗ cos θ − q ∗ sin θ β = d ∗ sin θ + q ∗ cos θ \begin{cases}\alpha = d * \cos\theta - q * \sin\theta\\\beta = d * \sin\theta+q * \cos\theta\end{cases} {α=d∗cosθ−q∗sinθβ=d∗sinθ+q∗cosθ
- 作用:反Park变换的作用是将经过PI控制器调节后的
Vq
和Vd
转换回静止坐标系下的Valpha
和Vbeta
,以便后续通过SVPWM等算法生成驱动电机的三相电压。 - 在STM32G4中的实现:在STM32G4的电机控制库中,
MCM_Rev_Park
函数用于执行反Park变换,将Vq
和Vd
转换回Valpha
和Vbeta
,完成整个电流控制的闭环。
1.1 Park 变换原理
- 电流环闭环构建的下一步:使用Park变化把Iα,Iβ转化为Id和Iq
1.2 Park和反Park变换建模
-
打开Simulink,在之前Clark变换的基础上增加Park和反Park变换模块
-
根据Park变换公式,搭建Park变换模型
-
根据AntiPark变换公式,搭建AntiPark变换模型;
-
增加theta 角度生成模块;与Clark角度保持同步;
-
将 ialpha,ibeta,id和 iq 配置成全局 Simulink signal,便于程序代码观测;(具体方法详见上一个文章)
-
点击仿真,观察波形