零基础自学发表核心期刊

论文工具

AI平台:

weresearch、kimi.moonshot、paperdigest、青泥学术、readpaper、openrouter .ai。更多文字、语音、图片、视频、数学公式的AI平台待发掘。

看代码:

source insight

找代码:

paperwithcode、

翻译论文:

有道翻译翻译整篇论文、知云 翻译、

常见核心期刊:

计算机学报、西安电子学报、

看论文:

小绿鲸、

搜索下载论文:

某宝买账号、拼嬉戏。百度学术论文求助、sci-hub、connected paper.com、aminer、semantic shcolar、谷粉学术论坛、微信论文求助群、学校图书馆、arxiv、学术范、sci.justscience、easyscholar,边写边搜,web of science,science direct,readpaper,latex,overleaf、findsci,dbip

文件传输:

蓝奏云网盘、PC微信文件传输

论文命令:

序号+年份+期刊分区+关键词+论文名称

论文合集:

知乎整理论文合集

论文综述-论文-复现的数据集和可行性(太大了得租服务器)

论文阅读神器

经验日记20240510

        作为机械跨考零基础。学了一些C语言、python、Pytorch、机器学习和深度学习的基础(甚至基础也很一般),开始着手写核心期刊。首先是看论文,我的大方向是计算机视觉,这是由指导老师决定的,小方向老师推荐图像分割,但是我自己做的图像分类,因为比赛有了一点苗头。确定小方向的方法是看计算机视觉领域近5年的核心及其以上论文的摘要和结论,搞懂摘要和结论。这样就能总结出每一篇论文,用什么方法解决了什么问题,看的时候就先知网看中外文(校园网可以直接阅读知网论文),然后做成表格。表格内容包括论文等级、出版时间、中外文、摘要。然后你就对整个计算机视觉机视觉领域近5年的研究热点、冷门。那么对于基础薄弱的同学,比如我,尽量选热门,因为参考文献比较多。多以我选择了小方向,医学图像分类。

        小方向确定后,我找到小方向的论文,近5年且核心以上的论文。用AI总结论文等级、出版时间、中外文、摘要、实验方法、实验效果、数据集、创新点和不足,弄成一个表格。

论文名称DOI发表时间中外+等级摘要总结全文本文的实验结果与分析本文的数据集/dataset本文还可以继续可以改进和进一步创新的点本文用了哪些方法分别取得了什么效果

        精度和泛读小方向的论文。首先是泛读,泛读除了搞懂上述表格里的东西,还需要找到2-3篇精读的论文,比如我将一篇计算机应用与研究的论文精读,是想把它做为目标期刊,学习这篇核心的格式和表达,这篇文章的实验精度很高,所以打算用它的方法提高精度到99。另外通过泛读,我知道的我的创新点不是在于精度,而是在于精度+不确定性精度+模型压缩的提升。我精度的另外两篇论文就是我的论文的知识来源,一篇是精度+不确定性精度不错,但是精度都可以提升,我的目标是从86%提升到90以上,另外模型轻量化,也就是进行压缩。而且我是跟以往研究不同的方法来提升这些指标。所以算得上是创新。

        创新分三种。新问题新方法,新问题老方法,老问题新方法。所以我是属于老问题新方法。水论文的几种方式,一是将以往的研究采用某种方法得到性能提升,这个某种方法一般采用组合或者汲取不同方法的优点进行组合,比如集成模型;二是提取该问题的指标,采用别人的已经实现的好的指标的方法进行组合,比如张三将A指标用1方法提升到80%的精度,李四将A指标用2方法提升到90%的精度,你可以考虑用1+2的方法来试一试。再比如张三将A指标用1方法提升到80%的精度但B指标只有60%,李四将A指标用2方法提升到70%的精度但是B指标70%,你可以考虑用1+2的方法来试一试。所以有多种方法来做到创新,我采用的就是综合两篇论文的方法得到新方法,来实现更好的性能。

        遇到的困难如下:

1、首先是耐心地精度和泛读论文,一定要做表格。

2、翻译英文论文要有耐心,你精度的英文论文肯定是要翻译好了才好理解。

3、找到有代码的论文,这样才好创新,看没有代码的论文后很难复现。

4、代码的复现和组合,遇到维度不匹配等问题、环境搭建、GPU不够用、代码更改等。要学会debug、用GPT辅助解决。问题一般都是在模型、优化器、学习率、损失函数方面。

5、指标提不上来。我已经把代码组合好,可是组合后确实将两个功能结合了,倒是综合性能提升的同时单个指标下降很大,所以怎么提升指标是一个巨大的问题。

6、代码的原理不理解。这是因为论文的计算公式和术语很多,看起来很复杂,必须翻译好论文。当然,首先是好好地去理解代码,注释详细

未来计划解决方案:

1、指标提升不上来??检查模型、损失函数、学习率、优化器的选择和修改。做好修改记录,防止修改后无法复原。增加一个注意力机制试一试

2、不知道怎么写论文??指标欧克后,看看原论文,有耐心的去理解,然后汲取之前精读和泛读的论文,模仿那一篇模板核心开始写

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值