论文工具
AI平台:
weresearch、kimi.moonshot、paperdigest、青泥学术、readpaper、openrouter .ai。更多文字、语音、图片、视频、数学公式的AI平台待发掘。
看代码:
source insight
找代码:
paperwithcode、
翻译论文:
有道翻译翻译整篇论文、知云 翻译、
常见核心期刊:
计算机学报、西安电子学报、
看论文:
小绿鲸、
搜索下载论文:
某宝买账号、拼嬉戏。百度学术论文求助、sci-hub、connected paper.com、aminer、semantic shcolar、谷粉学术论坛、微信论文求助群、学校图书馆、arxiv、学术范、sci.justscience、easyscholar,边写边搜,web of science,science direct,readpaper,latex,overleaf、findsci,dbip
文件传输:
蓝奏云网盘、PC微信文件传输
论文命令:
序号+年份+期刊分区+关键词+论文名称
论文合集:
知乎整理论文合集
论文综述-论文-复现的数据集和可行性(太大了得租服务器)
论文阅读神器
经验日记20240510
作为机械跨考零基础。学了一些C语言、python、Pytorch、机器学习和深度学习的基础(甚至基础也很一般),开始着手写核心期刊。首先是看论文,我的大方向是计算机视觉,这是由指导老师决定的,小方向老师推荐图像分割,但是我自己做的图像分类,因为比赛有了一点苗头。确定小方向的方法是看计算机视觉领域近5年的核心及其以上论文的摘要和结论,搞懂摘要和结论。这样就能总结出每一篇论文,用什么方法解决了什么问题,看的时候就先知网看中外文(校园网可以直接阅读知网论文),然后做成表格。表格内容包括论文等级、出版时间、中外文、摘要。然后你就对整个计算机视觉机视觉领域近5年的研究热点、冷门。那么对于基础薄弱的同学,比如我,尽量选热门,因为参考文献比较多。多以我选择了小方向,医学图像分类。
小方向确定后,我找到小方向的论文,近5年且核心以上的论文。用AI总结论文等级、出版时间、中外文、摘要、实验方法、实验效果、数据集、创新点和不足,弄成一个表格。
论文名称 | DOI | 发表时间 | 中外+等级 | 摘要 | 总结全文 | 本文的实验结果与分析 | 本文的数据集/dataset | 本文还可以继续可以改进和进一步创新的点 | 本文用了哪些方法分别取得了什么效果 |
精度和泛读小方向的论文。首先是泛读,泛读除了搞懂上述表格里的东西,还需要找到2-3篇精读的论文,比如我将一篇计算机应用与研究的论文精读,是想把它做为目标期刊,学习这篇核心的格式和表达,这篇文章的实验精度很高,所以打算用它的方法提高精度到99。另外通过泛读,我知道的我的创新点不是在于精度,而是在于精度+不确定性精度+模型压缩的提升。我精度的另外两篇论文就是我的论文的知识来源,一篇是精度+不确定性精度不错,但是精度都可以提升,我的目标是从86%提升到90以上,另外模型轻量化,也就是进行压缩。而且我是跟以往研究不同的方法来提升这些指标。所以算得上是创新。
创新分三种。新问题新方法,新问题老方法,老问题新方法。所以我是属于老问题新方法。水论文的几种方式,一是将以往的研究采用某种方法得到性能提升,这个某种方法一般采用组合或者汲取不同方法的优点进行组合,比如集成模型;二是提取该问题的指标,采用别人的已经实现的好的指标的方法进行组合,比如张三将A指标用1方法提升到80%的精度,李四将A指标用2方法提升到90%的精度,你可以考虑用1+2的方法来试一试。再比如张三将A指标用1方法提升到80%的精度但B指标只有60%,李四将A指标用2方法提升到70%的精度但是B指标70%,你可以考虑用1+2的方法来试一试。所以有多种方法来做到创新,我采用的就是综合两篇论文的方法得到新方法,来实现更好的性能。
遇到的困难如下:
1、首先是耐心地精度和泛读论文,一定要做表格。
2、翻译英文论文要有耐心,你精度的英文论文肯定是要翻译好了才好理解。
3、找到有代码的论文,这样才好创新,看没有代码的论文后很难复现。
4、代码的复现和组合,遇到维度不匹配等问题、环境搭建、GPU不够用、代码更改等。要学会debug、用GPT辅助解决。问题一般都是在模型、优化器、学习率、损失函数方面。
5、指标提不上来。我已经把代码组合好,可是组合后确实将两个功能结合了,倒是综合性能提升的同时单个指标下降很大,所以怎么提升指标是一个巨大的问题。
6、代码的原理不理解。这是因为论文的计算公式和术语很多,看起来很复杂,必须翻译好论文。当然,首先是好好地去理解代码,注释详细
未来计划解决方案:
1、指标提升不上来??检查模型、损失函数、学习率、优化器的选择和修改。做好修改记录,防止修改后无法复原。增加一个注意力机制试一试
2、不知道怎么写论文??指标欧克后,看看原论文,有耐心的去理解,然后汲取之前精读和泛读的论文,模仿那一篇模板核心开始写