EmguCV-第10讲-对比度亮度调整与通道分离

本文介绍了如何使用Emgu CV库进行图像的对比度和亮度调整,以及如何分离和合并图像通道,实现对图像颜色信息的独立处理。通过代码示例展示了具体的实现过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

1 对比度亮度调整

在这里插入图片描述

2 通道的分离与合并

通道分离
在这里插入图片描述
通道合并
在这里插入图片描述

3 代码

using System;
using System.Collections.Generic;
using System.Linq;
using System.Text;
using System.Threading.Tasks;
using System.Drawing;

using Emgu.CV;
using Emgu.CV.Structure;
using Emgu.Util;
using Emgu.CV.Util;
using Emgu.CV.CvEnum;


namespace Lesson10
{
    class Program
    {
        static void Main(string[] args)
        {
            #region 内容一:调整对比度和亮度
            //Image<Bgr, byte> img = new Image<Bgr, byte>("3.jpg");
            //Image<Bgr, byte> img2 = img.Clone();
            //int contrast = 200;
            //int brightness = 0;

            //for (int i = 0; i < img.Rows; i++)
            ////{
            //    for (int j = 0; j < img.Cols; j++)
            //    {
            //        int B = (int)(contrast * 0.01 * img.Data[i, j, 0] + brightness);
            //        int G = (int)(contrast * 0.01 * img.Data[i, j, 1] + brightness);
            //        int R = (int)(contrast * 0.01 * img.Data[i, j, 2] + brightness);
            //防止数据溢出
            //        if (B > 255)
            //            B = 255;
            //        if (G > 255)
            //            G = 255;
            //        if (R > 255)
            //            R = 255;
            //        img.Data[i, j, 0] = (byte)B;
            //        img.Data[i, j, 1] = (byte)G;
            //        img.Data[i, j, 2] = (byte)R;
            //    }
            //}

            //CvInvoke.Imshow("img", img);
            //CvInvoke.WaitKey(0);
            #endregion
            #region 内容二:通道分离与合并
            Mat img = CvInvoke.Imread("3.jpg");
            Mat[] Channels = img.Split();//通道分离,返回一个数组类型
           // CvInvoke.Imshow("B", Channels[0]);
           // CvInvoke.Imshow("G", Channels[1]);
           // CvInvoke.Imshow("R", Channels[2]);

            Mat dst = new Mat();
            VectorOfMat vChannels = new VectorOfMat();
            //二值化处理
            CvInvoke.Threshold(Channels[0], Channels[0], 100, 255, ThresholdType.Binary);
            CvInvoke.Threshold(Channels[1], Channels[1], 100, 255, ThresholdType.Binary);
            CvInvoke.Threshold(Channels[2], Channels[2], 100, 255, ThresholdType.Binary);

            vChannels.Push(Channels[0]);
            vChannels.Push(Channels[1]);
            vChannels.Push(Channels[2]);
            CvInvoke.Merge(vChannels, dst);//通道合并
            CvInvoke.Imshow("Merge", dst);

            CvInvoke.Imshow("reult", img);
            CvInvoke.WaitKey(0); 
            #endregion
        }
    }
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值