LeetCode10. 正则表达式匹配(python)

本文深入解析了正则表达式匹配算法,特别是如何处理特殊字符'.'和'*',并提供了一个使用动态规划实现的具体示例。通过理解转移方程,读者可以掌握如何判断一个字符串是否完全匹配给定的正则表达式模式。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

给定一个字符串 (s) 和一个字符模式 (p)。实现支持 '.' 和 '*' 的正则表达式匹配。

'.' 匹配任意单个字符。
'*' 匹配零个或多个前面的元素。

匹配应该覆盖整个字符串 (s) ,而不是部分字符串。

说明:

  • s 可能为空,且只包含从 a-z 的小写字母。
  • p 可能为空,且只包含从 a-z 的小写字母,以及字符 . 和 *

示例 1:

输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。

示例 2:

输入:
s = "aa"
p = "a*"
输出: true
解释: '*' 代表可匹配零个或多个前面的元素, 即可以匹配 'a' 。因此, 重复 'a' 一次, 字符串可变为 "aa"。

示例 3:

输入:
s = "ab"
p = ".*"
输出: true
解释: ".*" 表示可匹配零个或多个('*')任意字符('.')。

示例 4:

输入:
s = "aab"
p = "c*a*b"
输出: true
解释: 'c' 可以不被重复, 'a' 可以被重复一次。因此可以匹配字符串 "aab"。

示例 5:

输入:
s = "mississippi"
p = "mis*is*p*."
输出: false

解题思路:

动态规划

思路跟我上一篇文章讲的最长公共子串很像,直接给出转移方程:

if p[j] == "." or p[j] ==s[i]: 
      dp[i][j] = dp[i-1][j-1]  

if p[j] == "*":
      
      if p[j-1] == s[i] or p[j-1] == ".":
      dp[i][j] = dp[i][j-1] #"a*" 有一个a
              or dp[i][j-2] #"a*" 有多个a
              or dp[i-1][j] #"a*" 没有a
      
      elif p[j-1] != s[i]: dp[i][j] = dp[i][j-2]

代码:

class Solution:
    def isMatch(self, s: str, p: str) -> bool:

        s = "?" + s
        p = "!" + p

        dp = [[False for _ in range(len(p))] for _ in range(len(s))]
        dp[0][0] = True
        for j in range(2, len(p)):
            if p[j] == "*"and dp[0][j-2]:
                dp[0][j] = True
                
        for i in range(1, len(s)):
            for j in range(1, len(p)):
                
                if p[j] == "." or p[j] ==s[i]:
                    dp[i][j] = dp[i-1][j-1]
                    
                elif p[j] == "*":
                    if p[j-1] == s[i] or p[j-1] == ".":
                        dp[i][j] = (dp[i][j-1] or dp[i][j-2] or dp[i-1][j])
                    elif p[j-1] != s[i]:
                        dp[i][j] = dp[i][j-2]
        #print(dp)
        
        return dp[-1][-1]

 

### 正则表达式匹配规则 正则表达式是一种用于描述字符串模式的语言,广泛应用于各种编程语言中。对于JavaJavaScript环境下HTML标签的匹配[^1]以及更通用的支持`.``*`元字符正则表达式匹配问题[^2],遵循特定的语法结构。 #### 基础符号解释 - `.`:表示任何单一字符(除了换行符) - `*`:指示前一元素可以出现零次或多次 - `+`:意味着前一个字符至少要出现一次 - `?`:表明前一个字符是可选的,即可能出现也可能不出现 - `[abc]`:方括号内的任一字符都会被接受作为有效输入的一部分 - `(exp)`:圆括号用来分组表达式,影响优先级 针对带有特殊字符`.``*`的情况,在LeetCode10题中提到,当遇到星号时,它允许其前面的一个字符重复任意次数甚至不存在;而句点能够代表除换行外的任何一个字符。 ```python def isMatch(s, p): dp = [[False] * (len(p) + 1) for _ in range(len(s) + 1)] dp[-1][-1] = True for i in range(len(s), -1, -1): for j in range(len(p) - 1, -1, -1): first_match = i < len(s) and p[j] in {s[i], '.'} if j+1 < len(p) and p[j+1] == '*': dp[i][j] = dp[i][j+2] or first_match and dp[i+1][j] else: dp[i][j] = first_match and dp[i+1][j+1] return dp[0][0] ``` 这段Python代码实现了基于动态规划算法来判断给定字符串`s`是否能完全由模式串`p`所定义的规则进行匹配[^3]。这里的关键在于构建二维布尔型列表`dp[][]`,其中每一个位置记录着对应子序列之间的关系状态。 通过上述方式解决了复杂度较高的正则表达式匹配难题,并且有效地利用了记忆化技术减少了不必要的重复运算过程。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值