PIL,Skimage,OpenCV对图像处理的差异

本文探讨了PIL, Skimage和OpenCV在图像处理方面的差异,特别是在深度学习前的图像预处理步骤。PIL适用于基本操作但需转换为ndarray,Skimage提供了as_gray参数方便灰度转换,而OpenCV通过不同的读取模式支持更复杂的图像处理,但不支持GIF格式。" 115107215,9228493,阿里云免费SSL证书申请与配置指南,"['云计算', '网络安全', '域名管理', '服务器配置', 'HTTPS']

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一, PIL,Skimage,OpenCV是对图像处理的一些常用的库,一般进行深度学习前,都需要把图像或图片转换成数组ndarray格式,再按照tensor形式送入网络模型进行训练,在进入网络前,进行图片的读取,预处理(缩放,截取,增强,添加噪声等)操作必不可少。一般的图像处理PIL,Skimage都可以完成,但是复杂的图像处理还是需要更专业的OpenCV库。

二,PIL,Skimage,OpenCV针对图像的简单处理:open,resize,show操作,来认识不同图像库对图像处理上的一些不同。在深度学习中,避免数据预处理阶段的一些错误发生。
图像一般有彩色图(RGB or RGBA),灰度图(gray)
1.PIL 图像读取,缩放,显示,转ndarray:
优点:彩图与灰度图都可以读取,自己可以区分,不用操作者指定mode。颜色通道默认为RGB或RGBA的顺序
缺点:数据不能直接用于深度学习,需要ndarray转换。
注意:PIL默认显示为图像的宽高,经过ndarray转化后,变化高宽(行列)


    from PIL import Image
import numpy as np
#image = Image.open('test_rgba.png') # 图片读取RGBA
#image = Image.open('test_rgb.png') # 图片读取RGB
image = Image.open('test_gray.GIF') # 图片读取gray
print(type(image)) # out: PIL.JpegImagePlugin.JpegImageFile
print(image.size)  # out:  (宽度, 高度)
print(image.mode) # out: 'RGBA' or 'RGB' or 'L'

#print(image.shape) #'ImageFile' object has no attribute 'shape' 重点注意
#因为读取图片后为PIL格式,并非ndarray格式,不具有shape的属性
# resize w*h
image = image.resize((200,100),Image.NEARES
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值