一, PIL,Skimage,OpenCV是对图像处理的一些常用的库,一般进行深度学习前,都需要把图像或图片转换成数组ndarray格式,再按照tensor形式送入网络模型进行训练,在进入网络前,进行图片的读取,预处理(缩放,截取,增强,添加噪声等)操作必不可少。一般的图像处理PIL,Skimage都可以完成,但是复杂的图像处理还是需要更专业的OpenCV库。
二,PIL,Skimage,OpenCV针对图像的简单处理:open,resize,show操作,来认识不同图像库对图像处理上的一些不同。在深度学习中,避免数据预处理阶段的一些错误发生。
图像一般有彩色图(RGB or RGBA),灰度图(gray)
1.PIL 图像读取,缩放,显示,转ndarray:
优点:彩图与灰度图都可以读取,自己可以区分,不用操作者指定mode。颜色通道默认为RGB或RGBA的顺序
缺点:数据不能直接用于深度学习,需要ndarray转换。
注意:PIL默认显示为图像的宽高,经过ndarray转化后,变化高宽(行列)
from PIL import Image
import numpy as np
#image = Image.open('test_rgba.png') # 图片读取RGBA
#image = Image.open('test_rgb.png') # 图片读取RGB
image = Image.open('test_gray.GIF') # 图片读取gray
print(type(image)) # out: PIL.JpegImagePlugin.JpegImageFile
print(image.size) # out: (宽度, 高度)
print(image.mode) # out: 'RGBA' or 'RGB' or 'L'
#print(image.shape) #'ImageFile' object has no attribute 'shape' 重点注意
#因为读取图片后为PIL格式,并非ndarray格式,不具有shape的属性
# resize w*h
image = image.resize((200,100),Image.NEARES