adagrad

Adagrad是一种针对深度学习模型的优化算法,它解决了不同参数需要不同学习率的问题。通过自适应地调整每个参数的学习率,Adagrad在梯度大时减小步长,防止过拟合;在梯度小时增大步长,促进学习。这种机制使得算法在处理稀疏数据时表现出色。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

Adagrad是解决不同参数应该使用不同的更新速率的问题。Adagrad自适应地为各个参数分配不同学习率的算法。其公式如下:
在这里插入图片描述
gradient比较大的时候,走的地方比较陡峭,希望步长小一点,避免走过,gradient比较小的时候,走的地方比较平缓,希望步长大一点。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值