神经网络激活函数

神经网络的激活函数(Activation Function)
神经网络可以用在分类问题和回归问题上,不过需要根据情况改变输出层的激活函数。一般而言,回归问题用恒等函数,分类问题用softmax函数。

神经网络的激活函数必须使用非线性函数,因为使用线性函数的话,加深神经网络的层数就再没有意义了:

  • 非线性: 当激活函数是非线性的时候(一阶导数不为常数),一个两层的神经网络就可以逼近基本上所有的函数了。如果激活函数是恒等激活函数的时候(即f(x)=x),就不满足这个性质了,而且如果MLP使用的是恒等激活函数,那么其实整个网络跟单层神经网络是等价的。
  • 可微性: 当优化方法是基于梯度的时候这个性质是必须的
  • 单调性: 当激活函数是单调的时候,单层网络能够保证是凸函数
  • f(x)≈x: 当激活函数满足这个性质的时候,如果参数的初始化是random的很小的值,那么神经网络的训练将会很高效;如果不满足这个性质,那么就需要很用心的去设置初始值。
  • 输出值的范围: 当激活函数输出值是有限的时候,基于梯度的优化方法会更加稳定,因为特征的表示受有限权值的影响更显著;当激活函数的输出是无限的时候,模型的训练会更加高效,不过在这种情况下,一般需要更小的learning rate.

softmax函数

分类问题中使用的softmax函数可以用下式表示:
yk=eak∑i=1neai y_k = \frac{ \text e ^{a_k}}{ \sum_{i=1}^n \text e^{a_i}} yk=i=1neai

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值