
深度学习
ZzjJjwW
网络信息安全,机器学习,深度学习
github:https://github.com/Zzjw527
展开
专栏收录文章
- 默认排序
- 最新发布
- 最早发布
- 最多阅读
- 最少阅读
-
神经网络与深度学习笔记汇总五
神经网络与深度学习笔记汇总五 将之前掘金写的学习笔记所遇困难搬到这里,方便查看复习 遇到问题: 报错 (未解决) 学习内容: 1、报错operand should contain 1 column s in条件后面有多个字段,in后面只能有一个字段。 我出现该情况于数据库插入数据,我插入的是元组(‘XXXX’,‘XXXX’,‘XXXX’,‘XXX’)但是sql语句只能输一个进去故报错 2、报错duplicate entry 1 for key primary’,原因忘记设主键,详情可看https://j原创 2020-08-16 09:42:24 · 9406 阅读 · 0 评论 -
神经网络与深度学习笔记汇总四
神经网络与深度学习笔记汇总四 将之前掘金写的学习笔记所遇困难搬到这里,方便查看复习 学习内容 1、在信号处理中认为信号具有较大的方差,噪声有较小的方差,信噪比就是信号与噪声的方差比,越大越好。 2、标准正态分布说明,各个点的纵坐标与均值偏差不大(二维),这样的话离散型弱,即线性更强,线性回归更好。实际上,线性类模型都需要标准化。 3、标准化-》主要目的是方便数值优化,因为线性类模型都是涉及梯度的 遇到问题: 手动导入wordcloud库 遇到问题is not a supported whee原创 2020-08-16 09:34:17 · 9050 阅读 · 0 评论 -
神经网络与深度学习笔记汇总二
神经网络与深度学习笔记汇总二正交化(方便调整参数)迭代单实数评估指标(判断几种手段/方法哪个更好)指标选取训练集、开发集、测试集作用与用途评估指标判断算法是好是坏迁移学习总结 结构化机器学习项目 正交化(方便调整参数) 将你可以调整的参数设置在不同的正交的维度上,调整其中一个参数,不会或几乎不会影响其他维度上的参数变化,这样在机器学习项目中,可以让你更容易更快速地将参数调整到一个比较好的数值 迭代 是重复反馈过程的活动,其目的通常是为了逼近所需目标或结果。每一次对过程的重复称为一次"迭代",而每一次迭代得到原创 2020-08-16 09:10:31 · 9307 阅读 · 1 评论 -
神经网络与深度学习笔记汇总一
神经网络与深度学习笔记汇总一梯度下降法:向量化:代替for循环广播ReLU激活函数逻辑回归损失函数(误差函数)代价函数卷积神经网络 梯度下降法: 通过最小化代价函数(成本函数)来训练的参数w和b 步骤: 1、初始化w和b 无论在哪里初始化,应该达到同一点或大致相同的点 2.朝最陡的下坡方向走一步,不断地迭代 3.直到走到全局最优解或者接近全局最优解的地方 m 个样本的梯度下降: 向量化:代替for循环 向量化实现将会非常直接计算 :z=np.dot(w,x)+b u=np.log是计算对数函数()、原创 2020-08-16 09:03:53 · 10157 阅读 · 0 评论 -
吴恩达神经网络和深度学习笔记(广播,激活函数)
@[吴恩达神经网络和深度学习笔记] 提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 吴恩达神经网络和深度学习笔记 广播 A.sum(axis = 0)中的参数axis。axis用来指明将要进行的运算是沿着哪个轴执行,在numpy中,0轴是垂直的,也就是列,而1轴是水平的,也就是行 reshape 使用数组的reshape方法,可以创建一个改变了尺寸的新数组,原数组的shape保持不变 定义矩阵X等于训练样本,将它们组合成矩阵的各列,形成一个n维或n乘以m维矩阵: 可以通过训练样本来进行原创 2020-08-15 16:10:35 · 8716 阅读 · 0 评论 -
神经网络与深度学习笔记汇总三
神经网络与深度学习笔记汇总三 将之前掘金写的学习笔记所遇困难搬到这里,方便查看复习 遇到问题: 异常值处理 学习内容 1、.drop() 返回的是一个新对象,原对象不会被改变。 2、遇到问题 ValueError: The truth value of a Series is ambiguous. Use a.empty, a.bool(), a.item(), a.any() or a.all() 大致意思是数组的真实值不明确 多种解决方法,类型改为float,或者用它上面提供的方法 学习内容 1、标准原创 2020-08-16 09:18:53 · 9232 阅读 · 0 评论