几种嵌入式中常见的滤波算法

本文详细介绍了移动平均、中值、卡尔曼、低通和互补滤波等在嵌入式系统开发中的应用,强调了它们在数据处理中的作用以及选择适合滤波器的重要性。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

在嵌入式系统开发中,滤波算法是不可或缺的一部分,用于从带有噪声的数据中提取有用信息,提高数据质量,并减少错误决策的可能性。下面将介绍几种在嵌入式系统中常见的滤波算法。

1. 移动平均滤波(Moving Average Filter)

移动平均滤波是一种简单的滤波算法,通过计算一定窗口内数据点的平均值来平滑数据。这种滤波器适用于减少随机噪声,特别是当数据变化较为平缓时。移动平均滤波的主要缺点是对于快速变化的数据可能会引入滞后。

#define N 10  // 定义窗口大小  
  
float moving_average(float *data, int index, float new_value) {  
    static float buffer[N] = {0};  // 存储窗口内的数据  
    static int current_index = 0;  // 当前窗口位置  
    float sum = 0;  
      
    // 用新值替换最老的数据  
    buffer[current_index] = new_value;  
    current_index = (current_index + 1) % N;  
      
    // 计算窗口内数据的平均值  
    for (int i = 0; i < N; i++) {  
        sum += buffer[i];  
    }  
      
    return sum / N;  
}

2. 中值滤波(Median Filter)

中值滤波是一种非线性滤波算法,它将一个窗口内的数据点按大小排序,然后取中值作为输出。这种滤波器对于去除椒盐噪声(即由偶然因素引起的极大或极小值)特别有效,常用于图像处理领域。在嵌入式系统中,中值滤波可用于处理传感器数据中的偶发性干扰。

#define N 5  // 定义窗口大小,通常为奇数  
  
float median_filter(float *
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值