在嵌入式系统开发中,滤波算法是不可或缺的一部分,用于从带有噪声的数据中提取有用信息,提高数据质量,并减少错误决策的可能性。下面将介绍几种在嵌入式系统中常见的滤波算法。
1. 移动平均滤波(Moving Average Filter)
移动平均滤波是一种简单的滤波算法,通过计算一定窗口内数据点的平均值来平滑数据。这种滤波器适用于减少随机噪声,特别是当数据变化较为平缓时。移动平均滤波的主要缺点是对于快速变化的数据可能会引入滞后。
#define N 10 // 定义窗口大小
float moving_average(float *data, int index, float new_value) {
static float buffer[N] = {0}; // 存储窗口内的数据
static int current_index = 0; // 当前窗口位置
float sum = 0;
// 用新值替换最老的数据
buffer[current_index] = new_value;
current_index = (current_index + 1) % N;
// 计算窗口内数据的平均值
for (int i = 0; i < N; i++) {
sum += buffer[i];
}
return sum / N;
}
2. 中值滤波(Median Filter)
中值滤波是一种非线性滤波算法,它将一个窗口内的数据点按大小排序,然后取中值作为输出。这种滤波器对于去除椒盐噪声(即由偶然因素引起的极大或极小值)特别有效,常用于图像处理领域。在嵌入式系统中,中值滤波可用于处理传感器数据中的偶发性干扰。
#define N 5 // 定义窗口大小,通常为奇数
float median_filter(float *